D-pantothenic acid

  • 文章类型: Journal Article
    维生素B5[D-泛酸(D-PA)]是一种必需的水溶性维生素,广泛用于食品和饲料工业。目前,相对较低的发酵效率限制了D-PA的工业应用。这里,使用系统的代谢工程策略构建了无质粒的D-PA超生产者。首先,丙酮酸通过删除非磷酸转移酶系统来富集,抑制丙酮酸竞争性分支,并动态地控制TCA循环。接下来,通过筛选限速酶PanBC并逐个调节该途径的其他酶,可以增强(R)-泛解酸途径。然后,为了增强NADPH的可持续性,通过新的“PEACES”系统实现NADPH再生,方法是(1)表达谷氨酸梭菌的NAD激酶基因ppnk和乙酰丁酸梭菌的NADP依赖性gapCcae,(2)敲除内源性sthA基因,在D-PA生物合成途径中与ilvC和panE相互作用。结合转录组分析,发现膜蛋白OmpC和TolR通过增加膜流动性促进D-PA外排。菌株PA132通过两阶段补料分批发酵产生的D-PA滴度为83.26g/L,这是迄今为止报道的最高D-PA滴度。这项工作为D-PA的工业生产建立了有竞争力的生产者,并为相关产品的生产提供了有效的策略。
    Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel \"PEACES\" system by (1) expressing the NAD+ kinase gene ppnk from Clostridium glutamicum and the NADP+-dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酮戊酸羟甲基转移酶(KPHMT)在d-泛酸生物合成中起关键作用。大多数KPHMT是具有低热稳定性的均聚物,对蛋白质工程和限制产量增强构成挑战。以前,从谷氨酸棒杆菌中筛选出高酶活性的KPHMT突变体(K25A/E189S)作为母株(M0)。在这种紧张的基础上,我们的研究重点是界面工程修改,采用多方面的方法,包括集成无折叠能量计算,B因素分析,和保守的现场分析。初步筛选导致在界面中选择五个突变体─E106S,E98T,E98N,S247I,和S247D─显示出改善的热稳定性,最终产生双位点突变体M8(M0-E98N/S247D)。M8在50°C时的T1/2值为288.79min,与M0相比增加了3.29倍。同时,M8的Tm值从53.2°C升高到59.6°C。结构和分子动力学模拟的研究表明,表面静电荷分布的变化以及亚基之间氢键的形成增加,有助于提高热稳定性。这项研究证实了界面工程修饰在增强KPHMT稳定性方面的功效,同时显示了其对工业d-泛酸合成产生积极影响的潜力。
    Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    D-泛酸,作为一种重要的维生素,广泛应用于饲料,医学,化妆品等领域。然而,目前通过微生物发酵生产D-泛酸仍然存在局限性。在本文中,我们通过阻断有机酸途径构建了D-泛酸生产的重组菌株,促进丙酮酸生物合成,缓解乙酰乳酸合酶的反馈抑制,提高葡萄糖摄入能力,并修改代谢途径中的必需基因。此外,获得了由ilvC编码的来自大肠杆菌(EcAHAIR)的新乙酰乳酸异还原酶突变体V412A,以探索其底物混杂性。与野生型相比,变体EcAHAIR-V412A具有减少的空间位阻和增强的分子间力,导致对2-乙酰乳酸的高亲和力。最终,最终菌株DPAN19/trc-ilvCV412A的发酵产量达到4.65g/L,在摇瓶培养中与DPA8菌株相比增加了192.5%,并在5L生物反应器中产生了62.82g/L的D-泛酸。本文所述的代谢工程策略和酶修饰方法为D-泛酸的生物制造提供了一个特殊的视角,支链氨基酸及其衍生物。
    D-Pantothenic acid, as a momentous vitamin, is extensively applied to feed, medicine, cosmetics and other fields. However, there are still limitations to produce D-pantothenic acid by microbial fermentation at present. In this paper, we constructed a recombinant strain for D-pantothenic acid production by blocking the organic acid pathway, boosting pyruvate biosynthesis, relieving feedback inhibition of acetolactate synthase, improving glucose intake capacity, and modifying essential genes in the metabolic pathway. In addition, a new acetolactate isomeroreductase mutant V412A origin from Escherichia coli (EcAHAIR) encoded by ilvC was obtained to explore its substrate promiscuity. Compared with the wild type, the variant EcAHAIR-V412A has reduced steric hindrance and enhanced intermolecular forces, resulting in a high affinity for 2-acetolactate. Eventually, the fermentation production of the final strain DPAN19/trc-ilvCV412A reached 4.65 g/L, increased by 192.5% compared with strain DPA8 in shake flask cultivation and produced 62.82 g/L D-pantothenic acid in a 5 L bioreactor. The metabolic engineering strategies and enzyme modification approaches described in this paper provide a particular perspective for the bio-manufacturing of D-pantothenic acid, branched-chain amino acids and its derivates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    Issues of regeneration of the cornea, which is the most vulnerable structure of the eyeball, suffering from various diseases and injuries, burns, when wearing contact lenses and glaucoma, are highly relevant for ophthalmologists. It is also necessary to minimize damage and stimulate corneal epithelization during and after the use of steroidal and non-steroidal anti-inflammatory drugs, antibacterial drugs and antiseptics, which have a cytotoxic effect and often inhibit regeneration processes, potentially even leading to the development of corneal epithelial defects. This review analyzes the effectiveness of a promising drug 5% dexpanthenol in terms of improving the reparative processes and the function of epithelial cells.
    Вопросы регенерации роговицы как самой уязвимой структуры глазного яблока, страдающей при различных заболеваниях и травмах, ожогах, при ношении контактных линз и при глаукоме, весьма актуальны для офтальмологов. Также необходимыми являются минимизация повреждения и стимуляция эпителизации роговицы после применения стероидных и нестероидных противовоспалительных средств, антибактериальных препаратов и антисептических средств, оказывающих цитотоксический эффект и зачастую тормозящих процессы регенерации, вплоть до развития дефектов эпителия роговицы. Одним из изученных и перспективных средств является декспантенол 5%, оценке эффективности которого в отношении улучшения репаративных процессов и воздействию на функцию эпителиоцитов и посвящен данный обзор.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了应对高浓度的葡萄糖,枯草芽孢杆菌,用于生产许多工业代谢物的微生物底盘,使用磷酸转移酶系统(PTS)快速吸收葡萄糖,导致新陈代谢溢出,在许多细菌中观察到的常见现象。尽管溢出代谢会影响细胞生长并减少许多代谢物的产生,在维持正常细胞生长的同时减少溢出代谢的有效策略仍有待开发。这里,我们使用群体感应(QS)介导的回路来调节葡萄糖摄取速率,从而缓解工程枯草芽孢杆菌中的溢出代谢,以产生d-泛酸(DPA)。低效率的非PTS系统用于早期生长阶段的葡萄糖摄取,以避免快速的糖酵解通量,而有效的PTS系统,由QS电路激活,在超过阈值细胞密度后,在生长后期自动激活。该策略已成功应用于DPA高产量的模块化代谢工程过程。通过增强关键酶的翻译水平(3-甲基-2-氧代丁酸羟甲基转移酶,泛酸合成酶,天冬氨酸1-脱羧酶前酶,2-脱氢泛素酸2-还原酶,二羟酸脱水酶,和乙酰乳酸合酶)与工程改造的5'-非翻译区(UTR)的mRNA,代谢通量在DPA产生方向上得到促进,将摇瓶中DPA的产量提高到5.11g/L。最后,工程枯草芽孢杆菌在补料分批发酵中产生21.52g/L的DPA。我们的工作不仅揭示了一种新的策略,通过调节葡萄糖摄取速率,并通过工程化5'-UTR来促进关键代谢酶的翻译,从而减少了溢出代谢,而且还显示了其在促进DPA的生物生产中的作用。枯草芽孢杆菌,具有很好的应用前景。
    In response to a high concentration of glucose, Bacillus subtilis, a microbial chassis for producing many industrial metabolites, rapidly takes up glucose using the phosphotransferase system (PTS), leading to overflow metabolism, a common phenomenon observed in many bacteria. Although overflow metabolism affects cell growth and reduces the production of many metabolites, effective strategies that reduce overflow metabolism while maintaining normal cell growth remain to be developed. Here, we used a quorum sensing (QS)-mediated circuit to tune the glucose uptake rate and thereby relieve overflow metabolism in an engineered B. subtilis for producing d-pantothenic acid (DPA). A low-efficiency non-PTS system was used for glucose uptake at the early growth stages to avoid a rapid glycolytic flux, while an efficient PTS system, which was activated by a QS circuit, was automatically activated at the late growth stages after surpassing a threshold cell density. This strategy was successfully applied as a modular metabolic engineering process for the high production of DPA. By enhancing the translation levels of key enzymes (3-methyl-2-oxobutanoate hydroxymethytransferase, pantothenate synthetase, aspartate 1-decarboxylase proenzyme, 2-dehydropantoate 2-reductase, dihydroxy-acid dehydratase, and acetolactate synthase) with engineered 5\'-untranslated regions (UTRs) of mRNAs, the metabolic flux was promoted in the direction of DPA production, elevating the yield of DPA to 5.11 g/L in shake flasks. Finally, the engineered B. subtilis produced 21.52 g/L of DPA in fed-batch fermentations. Our work not only revealed a new strategy for reducing overflow metabolism by adjusting the glucose uptake rate in combination with promoting the translation of key metabolic enzymes through engineering the 5\'-UTR of mRNAs but also showed its power in promoting the bioproduction of DPA in B. subtilis, exhibiting promising application prospects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    维生素B5,也称为d-泛酸,是人体必需的维生素,广泛用于制药,营养补充剂,食物,和化妆品。然而,很少有研究调查微生物生产d-泛酸,尤其是在酿酒酵母中。通过采用系统的优化策略,我们从不同物种中筛选了7个D-泛酸生物合成的关键基因,包括细菌,酵母,真菌,藻类,植物,动物,等。,并在酿酒酵母中构建了高效的异源d-泛酸途径。通过调整通路模块的拷贝数,敲除内源性旁路基因,平衡NADPH利用率,调节GAL诱导系统,高产d-泛酸菌株,DPA171,它可以使用葡萄糖调节基因表达,是建造的。通过优化补料分批发酵,DPA171产生4.1克/升d-泛酸,这是迄今为止酿酒酵母中的最高滴度。本研究为维生素B5微生物细胞工厂的开发提供了指导。
    Vitamin B5, also called d-pantothenic acid, is an essential vitamin in the human body and is widely used in pharmaceuticals, nutritional supplements, food, and cosmetics. However, few studies have investigated the microbial production of d-pantothenic acid, especially in Saccharomyces cerevisiae. By employing a systematic optimization strategy, we screened seven key genes in d-pantothenic acid biosynthesis from diverse species, including bacteria, yeast, fungi, algae, plants, animals, etc., and constructed an efficient heterologous d-pantothenic acid pathway in S. cerevisiae. By adjusting the copy number of the pathway modules, knocking out the endogenous bypass gene, balancing NADPH utilization, and regulating the GAL inducible system, a high-yield d-pantothenic acid-producing strain, DPA171, which can regulate gene expression using glucose, was constructed. By optimizing fed-batch fermentation, DPA171 produced 4.1 g/L d-pantothenic acid, which is the highest titer in S. cerevisiae to date. This study provides guidance for the development of vitamin B5 microbial cell factories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    维生素B5,也称为D-泛酸(D-PA),是一种必需的微量营养素,在维持生物体的生理功能中起着至关重要的作用。它广泛用于:食品,医学,饲料,化妆品,和其他领域。目前,工业中D-PA的生产在很大程度上依赖于化学过程和酶催化。随着市场需求的增加,用可再生资源的微生物发酵代替基于化学的D-PA生产是必要的。在这次审查中,首先介绍了D-PA的生理作用和应用,之后将总结生物合成途径和酶。随后,分析和讨论了一系列D-PA过量生产的细胞工厂发展策略。最后,对微生物生产D-PA的前景进行了展望。
    Vitamin B5, also called D-pantothenic acid (D-PA), is a necessary micronutrient that plays an essential role in maintaining the physiological function of an organism. It is widely used in: food, medicine, feed, cosmetics, and other fields. Currently, the production of D-PA in industry heavily relies on chemical processes and enzymatic catalysis. With an increasing demand on the market, replacing chemical-based production of D-PA with microbial fermentation utilizing renewable resources is necessary. In this review, the physiological role and applications of D-PA were firstly introduced, after which the biosynthesis pathways and enzymes will be summarized. Subsequently, a series of cell factory development strategies for excessive D-PA production are analyzed and discussed. Finally, the prospect of microbial production of D-PA production has been prospected.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    D-泛酸(DPA)合成的高产化学和化学酶方法受到使用有毒化学物质和DL-泛酸内酯外消旋混合物形成的限制。或者,发现DPA生产的安全微生物发酵途径很有希望,但生产率低和前体补充。在这项研究中,巨大芽孢杆菌在没有前体补充的情况下被代谢工程化以产生DPA。为了提供更高的前体D-泛解酸供应,参与其合成的关键基因过度表达,在摇瓶中获得0.53±0.08g/L的DPA。发现辅因子CH2-THF对于DPA生物合成至关重要,并通过丝氨酸-甘氨酸降解途径再生。增加另一种前体的供应,通过密码子优化和限制性L-天冬氨酸-1-脱羧酶(ADC)的给药实现β-丙氨酸。泛酸β-丙氨酸连接酶的共表达,ADC,磷酸烯醇丙酮酸羧化酶,在摇瓶水平下,天冬氨酸氨基转移酶和天冬氨酸氨裂解酶将DPA浓度提高到2.56±0.05g/L。在有和没有补充β-丙氨酸的生物反应器中补料分批发酵将DPA浓度提高到19.52±0.26和4.78±0.53g/L,分别。本研究成功地证明了将前体供应工程与辅因子再生相结合以提高重组巨大芽孢杆菌中DPA滴度的合理方法。
    High-yielding chemical and chemo-enzymatic methods of D-pantothenic acid (DPA) synthesis are limited by using poisonous chemicals and DL-pantolactone racemic mixture formation. Alternatively, the safe microbial fermentative route of DPA production was found promising but suffered from low productivity and precursor supplementation. In this study, Bacillus megaterium was metabolically engineered to produce DPA without precursor supplementation. In order to provide a higher supply of precursor D-pantoic acid, key genes involved in its synthesis are overexpressed, resulting strain was produced 0.53 ± 0.08 g/L DPA was attained in shake flasks. Cofactor CH2-THF was found to be vital for DPA biosynthesis and was regenerated through the serine-glycine degradation pathway. Enhanced supply of another precursor, β-alanine was achieved by codon optimization and dosing of the limiting L-asparate-1-decarboxylase (ADC). Co-expression of Pantoate-β-alanine ligase, ADC, phosphoenolpyruvate carboxylase, aspartate aminotransferase and aspartate ammonia-lyase enhanced DPA concentration to 2.56 ± 0.05 g/L at shake flasks level. Fed-batch fermentation in a bioreactor with and without the supplementation of β-alanine increased DPA concentration to 19.52 ± 0.26 and 4.78 ± 0.53 g/L, respectively. This present study successfully demonstrated a rational approach combining precursor supply engineering with cofactor regeneration for the enhancement of DPA titer in recombinant B. megaterium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    D-泛酸(DPA),也称为维生素B5与几种生物学功能有关,其缺乏会导致人类代谢和能量紊乱。用DPA强化食品是解决这一风险的可行选择。DPA生物生产路线以泛妥酸-β-丙氨酸连接酶(PBL)为关键酶,这避免了繁琐和耗时的光学分辨率过程。选择有效的PBL酶对于DPA的生物生产至关重要。在这项研究中,panC基因编码来自大肠杆菌的PBL,巨大芽孢杆菌,谷氨酸棒杆菌和枯草芽孢杆菌在巨大芽孢杆菌中表达。枯草芽孢杆菌衍生的panC表现出高PBL活性61.62±2.15U/mL。磷酸烯醇丙酮酸羧激酶(pckA)的共表达并未改善巨大芽孢杆菌的DPA产量。外部补充前体底物(D-泛解酸和β-丙氨酸)的生物催化补料分批发酵将DPA滴度提高到45.56±0.53g/L。DPA对不同年龄段(包括婴儿,小孩子,运动员和老年人)的稳定增长,本研究中提出的DPA产量的提高为其在满足新兴营养需求的食品强化中的应用提供了优势。
    背景:在线版本包含补充材料,可在10.1007/s13197-021-05093-6获得。
    D-Pantothenic acid (DPA), also known as vitamin B5 is associated with several biological functions and its deficiency causes metabolic and energetic disorders in humans. Fortification of foods with DPA is the viable option to address this risk. DPA biological production route employs pantoate-β-alanine ligase (PBL) as the key enzyme, which avoids the tedious and time-consuming optical resolution process. The selection of an efficient PBL enzyme is vital for the biological production of DPA. In this study, the panC gene encoding PBL from Escherichia coli, Bacillus megaterium, Corynebacterium glutamicum and Bacillus subtilis was expressed in B. megaterium. B. subtilis derived panC exhibited high PBL activity 61.62 ± 2.15 U/mL. Co-expression of phosphoenolpyruvate carboxykinase (pckA) did not improve the DPA production in B. megaterium. Biocatalytic fed-batch fermentation with externally supplemented precursor substrates (D-pantoic acid and β-alanine) improved DPA titer to 45.56 ± 0.53 g/L. Daily dietary requirements of DPA for different age groups (including babies, small children, athletes and elderly people) is steadily increasing and the improved DPA production addressed in this study offers advantage for its application in fortification of food products meeting the emerging nutritional demand.
    BACKGROUND: The online version contains supplementary material available at 10.1007/s13197-021-05093-6.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    D-pantothenic acid (D-PA) is an essential vitamin that has been widely used in medicine, food, and animal feed. Microbial production of D-PA from natural renewable resources is attractive and challenging. In this study, both strain improvements and fermentation process strategies were applied to achieve high-level D-PA production in Escherichia coli. First, a D-PA-producing strain was developed through deletion of the aceF and mdh genes combined with the overexpression of the gene ppnk. The obtained engineered E. coli DPA02/pT-ppnk accumulated 6.89 ± 0.11 g/L of D-PA in shake flask fermentation, which was 79.9 % higher than the control strain. Moreover, the cultivation process contributed greatly to D-PA production with respect to titer and productivity by betaine supplementation and dissolved oxygen (DO)-feedback feeding framework. Under optimal conditions, 68.3 g/L of D-PA, the specific productivity of 0.794 g/L h and the yield of 0.36 g/g glucose in 5 L fermenter were achieved. Overall, this research successfully exploited advanced strategies to lay the foundation for bio-based D-PA production in industrial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号