Cytokinesis

细胞分裂
  • 文章类型: Journal Article
    原理:心肌梗塞(MI)是一种严重的全球性临床疾病,普遍存在。成年哺乳动物心脏对损伤的反应产生新的心肌细胞(CMs)的能力有限仍然是开发有效疗法的主要障碍。目前的方法集中在通过细胞周期再入诱导现有CM的增殖。然而,这种方法主要提高细胞周期蛋白依赖性激酶6(CDK6)和DNA含量,缺乏适当的胞质分裂,并导致功能失调的双核CMs的形成。胞质分裂依赖于核糖体生物发生(Ribo-bio),核仁素(Ncl)调节的一个关键过程。我们的目标是确定一种促进DNA合成和胞质分裂的新方法。方法:各种技术,包括RNA/蛋白质测序分析,Ribo-Halo,Ribo-disome,流式细胞术,和心脏特异性肿瘤抑制视网膜母细胞瘤-1(Rb1)基因敲除小鼠,用于评估增殖/细胞周期再入和Ribo-bio/胞质分裂的系列信号传导。超声心动图,共焦成像,和组织学用于评估心功能。结果:与对照小鼠相比,分析显示MI小鼠心脏中Rb1的水平显着升高,circASXL1的水平降低。Rb1的缺失仅诱导细胞周期重新进入,同时增强Ribo-生物调节剂Ncl导致胞质分裂。机械上,生物信息学和损失/增益研究发现circASXL1/CDK6/Rb1调节细胞周期重新进入。此外,Ribo-Halo,Ribo-disome和circRNA下拉测定表明circASXL1通过Ncl/Ribo-bio促进胞质分裂。重要的是,来自脐带间充质干细胞(UMSC-Exo)的外泌体能够通过促进细胞周期折返和Ribo-bio/胞质分裂的协调信号来增强心脏功能。通过在UMSC-Exo中沉默circASXL1来减弱这些作用。结论:circASXL1/CDK6/Rb1/细胞周期折返和circASXL1/Ncl/Ribo-bio/胞质分裂的系列信号在心脏修复中起着至关重要的作用。UMSC-Exo通过以circASXL1依赖性方式刺激CM细胞周期折返和胞质分裂来有效修复梗塞心肌。这项研究提供了针对MI的circASXL1信号网络的创新治疗策略,并提供了增强心脏修复的潜在途径。
    Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart\'s limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌动球蛋白皮质是通过细胞骨架重塑产生驱动形状变化的力的活性材料。细胞分裂是重要的细胞分裂事件,在此期间皮质肌动球蛋白环关闭以分离两个子细胞。我们的主动凝胶理论预测,由生化振荡器控制并经历机械应变的肌动球蛋白系统将表现出复杂的时空行为。为了测试体内活性材料是否表现出时空复杂的动力学,我们以前所未有的时间分辨率对秀丽隐杆线虫胚胎进行成像,并发现细胞动力学皮质部分经历了加速和减速的周期性阶段。收缩振荡表现出一系列周期性,包括那些比RhoA脉冲的时间尺度长得多的周期,胞质分裂比任何其他生物学背景都短。在体内或计算机上修改机械反馈表明,收缩振荡的时间随机械反馈的强度而延长。在速度振荡周期较长的情况下,会发生快速局部振铃,可能是由于局部应力增加,因此,机械反馈。在材料周转率很高的地方也会发生快速侵入,在体内和硅。我们建议在脉冲RhoA活性引发的下游,机械反馈,包括但不限于材料平流,将收缩性的时间尺度扩展到生化输入的时间尺度之外,因此,使其对激活的波动具有鲁棒性。尽管需要从压实中恢复细胞骨架重塑,但收缩性的周向传播可能允许持续的收缩性。因此,比如生化反馈,机械反馈提供活性材料的响应性和鲁棒性。
    The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞分裂是母细胞的细胞质分离成子细胞的过程。这是由肌动球蛋白收缩环驱动的,该环产生皮质收缩性并驱动卵裂沟侵入,导致形成薄的细胞间桥。虽然胞质分裂过程中的细胞骨架重组已经得到了广泛的研究,对质膜的时空动力学知之甚少。这里,我们对白血病细胞胞质分裂过程中细胞表面的质膜脂质和蛋白质动力学进行成像和建模。我们揭示了在卵裂沟和细胞间桥的质膜的广泛积累和折叠,伴随着细胞极处质膜的耗尽和展开。这些膜动力学是由两种肌动球蛋白驱动的生物物理机制引起的:分裂沟的径向收缩导致表观细胞表面积的局部压缩和质膜在沟中的积累,而肌动球蛋白皮质流将质膜拖向细胞分裂平面,因为沟进入。这些影响的大小取决于质膜的流动性,皮层粘连,和皮质收缩性。总的来说,我们的工作揭示了分裂沟质膜积累的细胞内在机械调节,这可能在整个细胞动力学细胞中产生局部的膜张力差异.这可能会局部改变内吞作用,胞吐作用,和机械传导,同时也作为一种自我保护机制,以抵抗由于细胞间桥的高膜张力而引起的胞质分裂失败。
    Cytokinesis is the process where the mother cell\'s cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    社会变形虫盘基网柄菌是一个通用的模型,用于理解许多不同的细胞过程,涉及细胞运动,包括趋化性,吞噬作用,和胞质分裂。细胞分裂,特别是,是一个模型细胞形状的变化过程,其中一个细胞分成两个子细胞。盘盘D.已被广泛用于鉴定胞质分裂中的参与者,并了解它们如何包含胞质分裂的机械感觉和生化途径。在这一章中,我们描述了我们如何使用cDNA文库与D.discoideum互补来发现潜在的调节子细胞分裂。一旦确定,通过活细胞成像进一步分析这些调节剂,免疫荧光成像,荧光相关和互相关光谱,微量移液管抽吸,和光漂白后的荧光恢复。总的来说,这些方法有助于详述细胞分裂的机制和信号通路.
    The social amoeba Dictyostelium discoideum is a versatile model for understanding many different cellular processes involving cell motility including chemotaxis, phagocytosis, and cytokinesis. Cytokinesis, in particular, is a model cell-shaped change process in which a cell separates into two daughter cells. D. discoideum has been used extensively to identify players in cytokinesis and understand how they comprise the mechanosensory and biochemical pathways of cytokinesis. In this chapter, we describe how we use cDNA library complementation with D. discoideum to discover potential regulators of cytokinesis. Once identified, these regulators are further analyzed through live cell imaging, immunofluorescence imaging, fluorescence correlation and cross-correlation spectroscopy, micropipette aspiration, and fluorescence recovery after photobleaching. Collectively, these methods aid in detailing the mechanisms and signaling pathways that comprise cell division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞分裂是导致两个新细胞形成的细胞分裂周期的最后一步。成功的胞质分裂需要通过空间上不同的β-和γ-肌动蛋白网络对质膜进行显着的重塑。这些网络是由肌动蛋白成核剂的形式蛋白家族产生的,DIAPH3和DIAPH1。在这里,我们表明β-和γ-肌动蛋白在胞质分裂中发挥专门的和非冗余的作用,并且不能相互替代。具有改变的肌动蛋白同工型特异性的杂合DIAPH1和DIAPH3蛋白在细胞内重新定位细胞动力学肌动蛋白同工型网络的表达,导致细胞动力学衰竭。与此相一致,我们表明β-肌动蛋白网络,但不是γ-肌动蛋白网络,在细胞动力学沟维持非肌肉肌球蛋白II和RhoA是必需的。这些数据表明,独立且空间上不同的肌动蛋白同工型网络形成了独特的相互作用物的支架,这些相互作用物促进了局部的生化活动,以确保成功的细胞分裂。
    Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct β- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that β- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that β-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:人溶菌酶(hLYZ)是一种天然的抗菌蛋白,在食品和制药行业中具有广泛的应用。在Komagataellaphafii中重组生产hLYZ(K.phaffii)引起了相当大的关注,但是在酵母中它的高产有非常有限的策略。
    结果:这里通过基于大气和室温等离子体(ARTP)的诱变和转录组学分析,编码胞质分裂核心蛋白的两个基因MYO1和IQG1的表达被鉴定为随着更高的hLYZ产生而下调。任一基因的缺失都会导致严重的胞质分裂缺陷,但显著提高了hLYZ的产量。在Δmyo1突变体中进行高密度补料分批发酵后,获得了最高的hLYZ产量1,052,444±23,667U/mL的生物活性和4.12±0.11g/L的总蛋白浓度,代表酵母中hLYZ的最佳产量。此外,在该重组hLYZ上表征O-连接的甘露糖聚糖。
    结论:我们的工作表明,基于胞质分裂的形态学工程是增强K.phafii中hLYZ生产的有效方法。
    BACKGROUND: Human lysozyme (hLYZ) is a natural antibacterial protein with broad applications in food and pharmaceutical industries. Recombinant production of hLYZ in Komagataella phaffii (K. phaffii) has attracted considerable attention, but there are very limited strategies for its hyper-production in yeast.
    RESULTS: Here through Atmospheric and Room Temperature Plasma (ARTP)-based mutagenesis and transcriptomic analysis, the expression of two genes MYO1 and IQG1 encoding the cytokinesis core proteins was identified downregulated along with higher hLYZ production. Deletion of either gene caused severe cytokinesis defects, but significantly enhanced hLYZ production. The highest hLYZ yield of 1,052,444 ± 23,667 U/mL bioactivity and 4.12 ± 0.11 g/L total protein concentration were obtained after high-density fed-batch fermentation in the Δmyo1 mutant, representing the best production of hLYZ in yeast. Furthermore, O-linked mannose glycans were characterized on this recombinant hLYZ.
    CONCLUSIONS: Our work suggests that cytokinesis-based morphology engineering is an effective way to enhance the production of hLYZ in K. phaffii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hertwig的规则指出,细胞沿着最长轴分裂,通常由作用在有丝分裂纺锤体上的力驱动。这里,我们表明,与此规则相反,秀丽隐杆线虫早期胚胎中基于微管的拉力使纺锤体与细胞短轴对齐。我们将理论与实验相结合,以揭示为了纠正这种错位,由收缩的细胞动力学环产生的向内的力旋转整个细胞,直到纺锤体与细胞的长轴对齐。用轻微压缩的小鼠受精卵进行的实验表明,这种细胞动力学环驱动的机制确保Hertwig的规则对于能够在限制壳内旋转的细胞是通用的,这种情况适用于许多系统的早期细胞分裂。
    Hertwig\'s rule states that cells divide along their longest axis, usually driven by forces acting on the mitotic spindle. Here, we show that in contrast to this rule, microtubule-based pulling forces in early Caenorhabditis elegans embryos align the spindle with the short axis of the cell. We combine theory with experiments to reveal that in order to correct this misalignment, inward forces generated by the constricting cytokinetic ring rotate the entire cell until the spindle is aligned with the cell\'s long axis. Experiments with slightly compressed mouse zygotes indicate that this cytokinetic ring-driven mechanism of ensuring Hertwig\'s rule is general for cells capable of rotating inside a confining shell, a scenario that applies to early cell divisions of many systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多生物体利用基于肌动蛋白和肌球蛋白的细胞动力学环来帮助完成胞质分裂。在裂殖酵母中,分离起始网络(SIN)促进适当的CR功能和稳定性。SIN是一种保守且必需的信号传导网络,由GTP酶和在主轴极体(SPB)处组装的一系列激酶组成。与STRIPAK磷酸酶复合物相关的PP2ASIN抑制性磷酸酶(SIP)复合物是SIN信号传导的一种抑制剂。SIP由Csc1、Csc2、Csc3、Csc4、Paa1和磷酸酶亚基Ppa3组成。这里,我们确定SIP通过Csc1FHA结构域锚定在SPB,并且由于持续的SIN抑制,SIP的组成型SPB定位是致命的。用FHA结构域内的点突变破坏SPB处的SIP对接或通过在Ppa3内引入点突变来消除磷酸酶活性导致没有SIN抑制功能的完整SIP复合物。最后,我们定义了Ppa3的独特功能,但不是另外两个PP2A催化亚基,纳入SIP。总的来说,我们提供有关SIP复合体如何组装的见解,本地化,并在胞质分裂过程中以时空精度抵消SIN。
    Many organisms utilize an actin- and myosin-based cytokinetic ring (CR) to help complete cytokinesis. In Schizosaccharomyces pombe, the Septation Initiation Network (SIN) promotes proper CR function and stability. The SIN is a conserved and essential signaling network consisting of a GTPase and a cascade of kinases assembled at the spindle pole body (SPB). The PP2A SIN inhibitory phosphatase (SIP) complex related to the STRIPAK phosphatase complex is one inhibitor of SIN signaling. The SIP consists of Csc1, Csc2, Csc3, Csc4, Paa1, and the phosphatase subunit Ppa3. Here, we determine that the SIP is anchored at the SPB via the Csc1 FHA domain and that constitutive SPB localization of the SIP is lethal due to persistent SIN inhibition. Disrupting SIP docking at the SPB with a point mutation within the FHA domain or eliminating phosphatase activity by introducing a point mutation within Ppa3 resulted in intact SIP complexes without SIN inhibitory function. Lastly, we defined the unique features of Ppa3 that allow it, but not two other PP2A catalytic subunits, to incorporate into the SIP. Overall, we provide insight into how the SIP complex assembles, localizes, and functions to counteract the SIN with spatiotemporal precision during cytokinesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在植物营养组织中,细胞分裂采用称为前前期带(PPB)的有丝分裂微管阵列,标记皮质分裂部位。这种瞬时细胞骨架阵列压印空间信息,以在有丝分裂细胞分裂的后期阶段由细胞动力学原生质体读取。在拟南芥中,我们发现PPB将肌球蛋白XI运动MYA1/Myo11F招募到皮质分裂部位,在那里,它连接了微管相关的蛋白质和马达,形成了一个突出的细胞骨架组件环,该组件接收了扩展的原生质体。皮质分裂部位的这种肌球蛋白定位模式取决于POK1/2Kinesin-12马达。MYA1/Myo11F在原生质体指导中的这种调节功能取决于完整的肌动蛋白丝。这些细胞骨架运动组件的发现指出了两个动态细胞骨架网络如何协同工作以控制开花植物中PPB依赖性分裂平面方向的潜在机制。
    In plant vegetative tissues, cell division employs a mitotic microtubule array called the preprophase band (PPB) that marks the cortical division site. This transient cytoskeletal array imprints the spatial information to be read by the cytokinetic phragmoplast at later stages of mitotic cell division. In Arabidopsis thaliana, we discovered that the PPB recruited the Myosin XI motor MYA1/Myo11F to the cortical division site, where it joined microtubule-associated proteins and motors to form a ring of prominent cytoskeletal assemblies that received the expanding phragmoplast. Such a myosin localization pattern at the cortical division site was dependent on the POK1/2 Kinesin-12 motors. This regulatory function of MYA1/Myo11F in phragmoplast guidance was dependent on intact actin filaments. The discovery of these cytoskeletal motor assemblies pinpoints a mechanism underlying how two dynamic cytoskeletal networks work in concert to govern PPB-dependent division plane orientation in flowering plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷酸肌醇(PtdIns)是位于血浆和细胞内膜的细胞质小叶的差异磷酸化脂质第二信使家族。激酶和磷酸酶可以选择性地改变不同细胞区室的PtdIns组成,导致特异性结合蛋白的募集,控制细胞稳态和增殖。因此,虽然PtdIns在间期影响细胞生长和存活,它们也正在成为多个时间定义的有丝分裂膜重塑事件的关键驱动因素,像单元格四舍五入,主轴方向,胞质分裂,和脱落。在这次审查中,我们总结并讨论了有丝分裂过程中PtdIns功能的已知情况,以及PtdIns产生和去除的变化如何干扰适当的细胞分裂。
    Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号