Computing Methodologies

计算方法
  • 文章类型: Journal Article
    鸡的行为识别是至关重要的,原因有很多,包括促进动物福利,确保健康问题的早期发现,优化农场管理实践,并为更可持续和道德的家禽养殖做出贡献。在本文中,我们介绍了一种基于视频感知镶嵌的边缘计算设备上的鸡的行为识别技术。我们的方法将视频感知镶嵌与深度学习相结合,可以从视频中准确识别特定的鸡行为。它达到了惊人的准确性,用MobileNetV2对表现出三种行为的鸡达到79.61%。这些发现强调了我们的方法在边缘计算设备上进行鸡行为识别的有效性和前景。使其适应不同的应用。不断探索和识别各种行为模式将有助于更全面地了解鸡的行为,提高不同背景下行为分析的范围和准确性。
    Chicken behavior recognition is crucial for a number of reasons, including promoting animal welfare, ensuring the early detection of health issues, optimizing farm management practices, and contributing to more sustainable and ethical poultry farming. In this paper, we introduce a technique for recognizing chicken behavior on edge computing devices based on video sensing mosaicing. Our method combines video sensing mosaicing with deep learning to accurately identify specific chicken behaviors from videos. It attains remarkable accuracy, achieving 79.61% with MobileNetV2 for chickens demonstrating three types of behavior. These findings underscore the efficacy and promise of our approach in chicken behavior recognition on edge computing devices, making it adaptable for diverse applications. The ongoing exploration and identification of various behavioral patterns will contribute to a more comprehensive understanding of chicken behavior, enhancing the scope and accuracy of behavior analysis within diverse contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2019年冠状病毒病(COVID-19)大流行继续对公共卫生部门构成重大挑战,包括阿拉伯联合酋长国(UAE)。这项研究的目的是评估各种深度学习模型在预测阿联酋境内COVID-19病例中的效率和准确性。从而帮助国家的公共卫生当局在知情的决策。
    这项研究利用了一个全面的数据集,包括确诊的COVID-19病例,人口统计,和社会经济指标。几种先进的深度学习模型,包括长短期记忆(LSTM),双向LSTM,卷积神经网络(CNN)CNN-LSTM,多层感知器,和递归神经网络(RNN)模型,进行了培训和评估。还实施了贝叶斯优化来微调这些模型。
    评估框架显示,每个模型都表现出不同的预测准确性和精度水平。具体来说,即使没有优化,RNN模型也优于其他架构。进行了全面的预测和透视分析,以仔细检查COVID-19数据集。
    这项研究通过提供重要见解,使阿联酋的公共卫生当局能够部署有针对性的数据驱动的干预措施,从而超越了学术界限。RNN模型,这被认为是最可靠和准确的具体背景,可以显著影响公共卫生决策。此外,这项研究的更广泛意义验证了深度学习技术处理复杂数据集的能力,从而为公共卫生和医疗保健部门的预测准确性提供了变革性的潜力。
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to pose significant challenges to the public health sector, including that of the United Arab Emirates (UAE). The objective of this study was to assess the efficiency and accuracy of various deep-learning models in forecasting COVID-19 cases within the UAE, thereby aiding the nation\'s public health authorities in informed decision-making.
    METHODS: This study utilized a comprehensive dataset encompassing confirmed COVID-19 cases, demographic statistics, and socioeconomic indicators. Several advanced deep learning models, including long short-term memory (LSTM), bidirectional LSTM, convolutional neural network (CNN), CNN-LSTM, multilayer perceptron, and recurrent neural network (RNN) models, were trained and evaluated. Bayesian optimization was also implemented to fine-tune these models.
    RESULTS: The evaluation framework revealed that each model exhibited different levels of predictive accuracy and precision. Specifically, the RNN model outperformed the other architectures even without optimization. Comprehensive predictive and perspective analytics were conducted to scrutinize the COVID-19 dataset.
    CONCLUSIONS: This study transcends academic boundaries by offering critical insights that enable public health authorities in the UAE to deploy targeted data-driven interventions. The RNN model, which was identified as the most reliable and accurate for this specific context, can significantly influence public health decisions. Moreover, the broader implications of this research validate the capability of deep learning techniques in handling complex datasets, thus offering the transformative potential for predictive accuracy in the public health and healthcare sectors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:由于巨大的搜索空间,生物标志物的发现是一项具有挑战性的任务。量子计算和量子人工智能(量子AI)可用于解决从遗传数据中发现生物标志物的计算问题。
    方法:我们提出了一种量子神经网络架构来发现输入激活途径的遗传生物标志物。最大相关性-最小冗余标准评分生物标志物候选集。我们提出的模型是经济的,因为神经解决方案可以在受约束的硬件上交付。
    结果:我们证明了与CTLA4相关的四种激活途径的概念证明,包括(1)CTLA4激活独立,(2)CTLA4-CD8A-CD8B共激活,(3)CTLA4-CD2共激活,和(4)CTLA4-CD2-CD48-CD53-CD58-CD84共激活。
    结论:该模型表明与CLTA4相关途径的突变激活相关的新遗传生物标志物,包括20个基因:CLIC4,CPE,ETS2,FAM107A,GPR116,HYOU1,LCN2,MACF1,MT1G,NAPA,NDUFS5,PAK1,PFN1,PGAP3,PPM1G,PSMD8、RNF213、SLC25A3、UBA1和WLS。我们开源实现:https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks。
    BACKGROUND: Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data.
    METHODS: We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware.
    RESULTS: We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation.
    CONCLUSIONS: The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Pauli通道是量子计算的基础,因为它们模拟了量子设备中最简单的噪声。我们提出了一种用于模拟Pauli通道的量子算法,并将其扩展为包含Pauli动态映射(参数化Pauli通道)。采用参数化的量子电路来适应动态映射。我们还建立了使用参数化电路可以实现N量子位变换的数学条件,其中只有一个单量子位操作取决于参数。在一个量子位的情况下,使用IBM的量子计算机演示了所提出的电路的实现,并报告此实现的保真度。
    Pauli channels are fundamental in the context of quantum computing as they model the simplest kind of noise in quantum devices. We propose a quantum algorithm for simulating Pauli channels and extend it to encompass Pauli dynamical maps (parametrized Pauli channels). A parametrized quantum circuit is employed to accommodate for dynamical maps. We also establish the mathematical conditions for an N-qubit transformation to be achievable using a parametrized circuit where only one single-qubit operation depends on the parameter. The implementation of the proposed circuit is demonstrated using IBM\'s quantum computers for the case of one qubit, and the fidelity of this implementation is reported.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    国际癌症研究机构(IARC)将PFOA归类为1类致癌物。这里,基于一种新颖的定制设计的抗PFOA单克隆抗体(mAb)2A3,开发了一种新的裸眼PFOA免疫染色试纸,可在10分钟内识别生活用水和真实人体样品中的PFOA,这首先是一种用于PFOA的免疫快速检测方法已被提出。利用量子计算等计算机模拟技术辅助设计PFOA半抗原的结构式,其中hapten是首次提出的。PFOA单克隆抗体(mAb)2A3的半数最大抑制浓度为2.4μg/mL。使用mAb2A3,我们开发了用于检测真实样品中的PFOA的免疫层析试纸条(ICS)。开发的方法在10分钟内产生结果,水的目测检出限为20、20和200μg/mL,检出限为50、200和500μg/mL,血液和尿液样本,分别。建立的ICS和间接竞争酶联免疫吸附试验用于分析实际样品,结果通过LC-MS/MS确认。我们的研究结果表明,ICS和ic-ELISA可以快速检测实际样品中的PFOA。
    The International Agency for Research on Cancer (IARC) classifies PFOA as a Class 1 carcinogen. Here, a new naked-eye PFOA immunochromographic strip was developed to recognize PFOA in domestic water and real human samples within 10 min based on a novel custom designed anti-PFOA monoclonal antibody (mAb) 2A3, which was firstly an immune rapid detection method for PFOA has been proposed. Using computer simulation techniques such as quantum computing to assist in designing the structural formula of PFOA semi antigen, which hapten was firstly proposed. The half maximal inhibitory concentration of PFOA monoclonal antibody (mAb) 2A3 was 2.4 μg/mL. Using mAb 2A3, we developed an immunochromatographic strip (ICS) for detecting PFOA in real samples. The developed method generated results in 10 min, with visual detection limits of 20, 20, and 200 μg/mL and limit of detection of 50, 200, and 500 μg/mL for water, blood and urine samples, respectively. The established ICS and indirect competitive enzyme-linked immunosorbent assay were used to analyze the actual samples, and the results were confirmed by LC-MS/MS. Our study findings showed that the ICS and ic-ELISA can quickly detect PFOA in actual samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转化生物信息学(TBI)通过整合基因组数据和临床信息,提供个性化医疗和量身定制的治疗选择,改变了医疗保健。近年来,TBI弥合了基因组和临床数据之间的差距,因为量子计算和利用最先进的技术等信息学的重大进展。本章讨论了转化生物信息学在改善人类健康方面的力量,从发现致病基因和变异到建立新的治疗技术。我们讨论了生物信息学在临床基因组学中的关键应用领域,如转化生物信息学中使用的数据源和方法,转化生物信息学对人类健康的影响,以及机器学习和人工智能如何被用来为药物开发和精准医学挖掘大量数据。我们也看看问题,约束,以及与利用基因组数据和转化生物信息学的未来及其对医学和人类健康的潜在影响有关的伦理问题。最终,本章强调了转化生物信息学在改变医疗保健和提高患者治疗效果方面的巨大潜力。
    Translational bioinformatics (TBI) has transformed healthcare by providing personalized medicine and tailored treatment options by integrating genomic data and clinical information. In recent years, TBI has bridged the gap between genome and clinical data because of significant advances in informatics like quantum computing and utilizing state-of-the-art technologies. This chapter discusses the power of translational bioinformatics in improving human health, from uncovering disease-causing genes and variations to establishing new therapeutic techniques. We discuss key application areas of bioinformatics in clinical genomics, such as data sources and methods used in translational bioinformatics, the impact of translational bioinformatics on human health, and how machine learning and artificial intelligence are being used to mine vast amounts of data for drug development and precision medicine. We also look at the problems, constraints, and ethical concerns connected with exploiting genomic data and the future of translational bioinformatics and its potential impact on medicine and human health. Ultimately, this chapter emphasizes the great potential of translational bioinformatics to alter healthcare and enhance patient outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    生物信息学通过使用计算方法来分析和解释生物数据,彻底改变了生物学和医学。量子力学最近已成为分析生物系统的一种有前途的工具,导致量子生物信息学的发展。这个新领域采用了量子力学的原理,量子算法,和量子计算来解决分子生物学中的复杂问题,药物设计,和蛋白质折叠。然而,生物信息学的交叉点,生物学和量子力学提出了独特的挑战。一个重要的挑战是科学家之间的量子生物信息学和量子生物学之间的混淆的可能性,有相似的目标和概念。此外,每个领域的不同计算使得很难从可能影响生物过程的其他因素中确定边界和识别纯粹的量子效应。这篇综述概述了量子生物学和量子力学的概念及其在量子生物信息学中的交集。我们研究了该领域的挑战和独特特征,并提出了量子生物信息学的分类,以促进跨学科合作并加速进步。通过释放量子生物信息学的全部潜力,这篇综述旨在帮助我们理解生物系统中的量子力学。
    Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在精准医学领域,深度学习的潜力被逐步利用,以促进复杂的临床决策,尤其是在导航包含Omics的多层面数据集时,临床,image,装置,社会,和环境维度。这项研究强调了图像数据的重要性,鉴于其在检测和分类威胁视力的糖尿病性视网膜病变(VTDR)中的重要作用,VTDR是导致视力障碍的主要因素。及时识别VTDR是有效干预和减轻视力丧失的关键。解决这个问题,这项研究介绍了“NIMEQ-SACNet,“一种新颖的混合模型,其强大的量子启发二进制灰狼优化器(EQI-BGWO)具有自我注意胶囊网络。所提出的方法的特点是两个关键的进步:首先,通过量子计算方法增强二进制灰狼优化,其次,部署增强的EQI-BGWO以熟练校准SACNet的参数,最终导致VTDR分类准确性的显著提升。所提出的模型处理二进制的能力,5阶段,7阶段VTDR分类非常值得注意。对眼底图像数据集的严格评估,由准确性等指标强调,灵敏度,特异性,Precision,F1-Score,和MCC,证明了NIMEQ-SACNet在主流算法和分类框架上的卓越地位。
    In the realm of precision medicine, the potential of deep learning is progressively harnessed to facilitate intricate clinical decision-making, especially when navigating multifaceted datasets encompassing Omics, Clinical, image, device, social, and environmental dimensions. This study accentuates the criticality of image data, given its instrumental role in detecting and classifying vision-threatening diabetic retinopathy (VTDR) - a predominant global contributor to vision impairment. The timely identification of VTDR is a linchpin for efficacious interventions and the mitigation of vision loss. Addressing this, This study introduces \"NIMEQ-SACNet,\" a novel hybrid model by the prowess of the Enhanced Quantum-Inspired Binary Grey Wolf Optimizer (EQI-BGWO) with a self-attention capsule network. The proposed approach is characterized by two pivotal advancements: firstly, the augmentation of the Binary Grey Wolf Optimization through Quantum Computing methodologies, and secondly, the deployment of the enhanced EQI-BGWO to adeptly calibrate the SACNet\'s parameters, culminating in a notable uplift in VTDR classification accuracy. The proposed model\'s ability to handle binary, 5-stage, and 7-stage VTDR classifications adroitly is noteworthy. Rigorous assessments on the fundus image dataset, underscored by metrics such as Accuracy, Sensitivity, Specificity, Precision, F1-Score, and MCC, bear testament to NIMEQ-SACNet\'s pre-eminence over prevailing algorithms and classification frameworks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: News
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用常规实验技术无法轻松表征固有无序蛋白质(IDP)和具有固有无序区域(IDR)的蛋白质的结构集合。计算技术补充了实验,并为IDP和具有IDR的蛋白质的结构集合提供了有用的见解。在这里,我们讨论了诸如同源性建模之类的计算技术,分子动力学模拟,具有分子动力学的机器学习,和量子计算可应用于IDPs和具有IDR的杂合蛋白的研究。我们还为可应用于IDP和含有有序结构域和IDR的杂合蛋白的计算技术提供了有用的未来观点。
    The structural ensembles of intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) cannot be easily characterized using conventional experimental techniques. Computational techniques complement experiments and provide useful insights into the structural ensembles of IDPs and proteins with IDRs. Herein, we discuss computational techniques such as homology modeling, molecular dynamics simulations, machine learning with molecular dynamics, and quantum computing that can be applied to the studies of IDPs and hybrid proteins with IDRs. We also provide useful future perspectives for computational techniques that can be applied to IDPs and hybrid proteins containing ordered domains and IDRs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号