Capsid Proteins

衣壳蛋白
  • 文章类型: Journal Article
    腺相关病毒2(AAV2)是以其感染人类细胞和类似生物体的能力而闻名的微小病毒。它们最近成为基因治疗领域的杰出候选者,主要归因于它们在人类中固有的非致病性以及与它们的操纵相关的安全性。AAV2作为基因治疗载体的功效取决于它们浸润宿主细胞的能力,一种依赖于它们构建能够破坏靶细胞细胞核的衣壳的能力的现象。为了增强他们的感染潜力,研究人员通过将突变引入衣壳来广泛审查各种组合文库,旨在提高他们的效率。高通量实验技术的出现,比如深度突变扫描(DMS),已经使通过实验评估这些图书馆的适用性达到预期目的变得可行。值得注意的是,机器学习开始展示其在从序列数据解决突变景观中的预测方面的潜力。在这种情况下,我们引入了一个生物物理启发的模型,旨在预测DMS实验中遗传变异的生存能力。该模型是针对AAV2衣壳蛋白中CAP区域的特定片段而定制的。为了评估其有效性,我们用不同的数据集进行模型训练,每个人都量身定制,以探索受选择过程影响的突变景观的不同方面。我们对生物物理模型的评估集中在两个主要目标上:(i)为变体的对数选择性提供定量预测,以及(ii)将其部署为二元分类器以将序列分类为可行和非可行类别。
    Adeno-associated viruses 2 (AAV2) are minute viruses renowned for their capacity to infect human cells and akin organisms. They have recently emerged as prominent candidates in the field of gene therapy, primarily attributed to their inherent non-pathogenic nature in humans and the safety associated with their manipulation. The efficacy of AAV2 as gene therapy vectors hinges on their ability to infiltrate host cells, a phenomenon reliant on their competence to construct a capsid capable of breaching the nucleus of the target cell. To enhance their infection potential, researchers have extensively scrutinized various combinatorial libraries by introducing mutations into the capsid, aiming to boost their effectiveness. The emergence of high-throughput experimental techniques, like deep mutational scanning (DMS), has made it feasible to experimentally assess the fitness of these libraries for their intended purpose. Notably, machine learning is starting to demonstrate its potential in addressing predictions within the mutational landscape from sequence data. In this context, we introduce a biophysically-inspired model designed to predict the viability of genetic variants in DMS experiments. This model is tailored to a specific segment of the CAP region within AAV2\'s capsid protein. To evaluate its effectiveness, we conduct model training with diverse datasets, each tailored to explore different aspects of the mutational landscape influenced by the selection process. Our assessment of the biophysical model centers on two primary objectives: (i) providing quantitative forecasts for the log-selectivity of variants and (ii) deploying it as a binary classifier to categorize sequences into viable and non-viable classes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可以使用杆状病毒表达载体系统产生腺相关病毒(AAV)的病毒样颗粒(VLP)。在AAV或AAVVLP的表面上插入小肽已用于将AAV重新定向到不同的靶组织并用于疫苗开发。通常,VLP在细胞内自组装,和提取步骤必须在纯化之前进行。这里,我们描述了我们用于从昆虫细胞中成功提取AAVVLP的方法,在其表面上插入了肽。
    Virus-like particles (VLPs) of the adeno-associated virus (AAV) can be produced using the baculovirus expression vector system. Insertion of small peptides on the surface of the AAV or AAV VLPs has been used to redirect the AAV to different target tissues and for vaccine development. Usually, the VLPs self-assemble intracellularly, and an extraction step must be performed before purification. Here, we describe the method we have used to extract AAV VLPs from insect cells successfully with peptide insertions on their surface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为商业疫苗开发的一部分,昆虫细胞表达已成功用于生产病毒抗原。作为表达式宿主,昆虫细胞通过呈现进行翻译后修饰(PTM)(例如糖基化和磷酸化)的能力而提供优于细菌系统的优势,从而保留蛋白质的天然功能性,特别是对于病毒抗原。昆虫细胞在精确模拟一些需要复杂糖基化模式的蛋白质方面具有局限性。昆虫细胞工程策略的最新进展可以在一定程度上克服这一限制。此外,成本效率,时间线,安全,和过程可采用性使昆虫细胞成为生产人类和动物疫苗亚基抗原的首选平台。在这一章中,我们描述了用于人类疫苗开发的SARS-CoV2刺突胞外域亚基抗原和病毒样颗粒(VLP)的产生方法,基于猪圆环病毒2(PCV2d)抗原的衣壳蛋白,用于使用两种不同的昆虫细胞系开发动物疫苗,分别为SF9和Hi5。该方法证明了昆虫细胞作为表达宿主的灵活性和广泛适用性。
    Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲醛灭活的脊髓灰质炎病毒颗粒的电化学分析表明,D抗原浓度与脊髓灰质炎病毒样品的最大振幅电流强度之间存在关系。因此,所得信号被鉴定为脊髓灰质炎病毒表面蛋白的电化学氧化。使用衣壳蛋白氨基酸残基的电氧化注册,通过5kGy剂量加速的电子灭活的脊髓灰质炎病毒颗粒的比较电化学分析,10kGy,15kGy,25kGy,在室温下进行30kGy。辐射剂量的增加伴随着电氧化信号的增加。在15-30kGy剂量的照射下,检测到脊髓灰质炎病毒衣壳蛋白的电氧化信号显着增加。获得的数据表明,在脊髓灰质炎病毒灭活条件下,脊髓灰质炎病毒衣壳蛋白的谱变化和电氧化信号增加与表面蛋白结构重组程度的增加和D-抗原保存不足有关。
    Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15-30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Introduction.禽呼肠孤病毒(ARV)与鸡的关节炎/腱鞘炎和吸收不良综合征有关。σC和σB蛋白,都暴露于病毒衣壳,具有高度免疫原性,可以构成旨在评估羊群免疫状态的诊断设备的基础。差距声明。商业ARVELISA无法区分接种和感染的动物,并且可能无法检测到循环ARV毒株。瞄准.我们旨在开发一种定制测试,以检测循环场ARV毒株,并区分接种疫苗和未接种疫苗的动物。方法论。我们开发了基于重组(r)σB的ELISA测定法,σC和非结构蛋白σNS,并使用接种疫苗和未接种疫苗的鸡的抗血清以及阴性对照对其进行了测试。σB和σC蛋白的片段也用于研究可在诊断测试中进一步利用的区域。结果。通过商业ELISA,接种疫苗和未接种疫苗的鸟类均为阳性,光密度值没有差异。相比之下,未接种疫苗的动物样品在rσB和rσCELISA测试中显示出较低的吸光度,在rσNSELISA测试中显示出较高的吸光度。阴性对照样品在所有测试中均为阴性。σB和σC蛋白的片段化表明,某些区域可以区分接种疫苗和未接种疫苗的动物。例如,σB氨基酸128-179(σB-F4)和σC氨基酸121-165(σC-F4)在接种疫苗的动物样本中表现出85%和95%的阳性,但在未接种疫苗的动物样本中只有5%和零阳性。分别。结论。这些数据表明,未接种疫苗的鸟类可能已暴露于ARV的田间毒株。重组测试中吸光度的降低可能反映了我们测试的特异性增加,因为未接种疫苗的样品显示与固定在ELISA上的疫苗蛋白的交叉反应性较低。根据ARV菌株之间的多样性,讨论了在接种疫苗和未接种疫苗的动物之间通过蛋白质片段测试获得的差异结果。
    Introduction. Avian reovirus (ARV) is associated with arthritis/tenosynovitis and malabsorption syndrome in chickens. The σC and σB proteins, both exposed to the virus capsid, are highly immunogenic and could form the basis for diagnostic devices designed to assess the immunological status of the flock.Gap Statement. Commercial ARV ELISAs cannot distinguish between vaccinated and infected animals and might not detect circulating ARV strains.Aim. We aimed to develop a customized test to detect the circulating field ARV strains as well as distinguish between vaccinated and unvaccinated animals.Methodology. We developed ELISA assays based on recombinant (r) σB, σC and the nonstructural protein σNS and tested them using antisera of vaccinated and unvaccinated chickens as well as negative controls. Fragments of σB and σC proteins were also used to study regions that could be further exploited in diagnostic tests.Results. Vaccinated and unvaccinated birds were positive by commercial ELISA, with no difference in optical density values. In contrast, samples of unvaccinated animals showed lower absorbance in the rσB and rσC ELISA tests and higher absorbance in the rσNS ELISA test than the vaccinated animals. Negative control samples were negative in all tests. Fragmentation of σB and σC proteins showed that some regions can differentiate between vaccinated and unvaccinated animals. For example, σB amino acids 128-179 (σB-F4) and σC amino acids 121-165 (σC-F4) exhibited 85 and 95% positivity among samples of vaccinated animals but only 5% and zero positivity among samples of unvaccinated animals, respectively.Conclusion. These data suggest that unvaccinated birds might have been exposed to field strains of ARV. The reduction in absorbance in the recombinant tests possibly reflects an increased specificity of our test since unvaccinated samples showed less cross-reactivity with the vaccine proteins immobilized on ELISAs. The discrepant results obtained with the protein fragment tests between vaccinated and unvaccinated animals are discussed in light of the diversity between ARV strains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人轮状病毒在大多数细胞系中表现出有限的嗜性并且复制不良。附着蛋白VP4是关键的轮状病毒向性决定因素。先前对人类轮状病毒适应培养细胞的研究鉴定了VP4的突变。然而,大多数此类研究仅使用一种人类轮状病毒基因型。在目前的研究中,我们连续传代了50份人类轮状病毒临床标本,这些标本代表了最常见的与人类严重疾病相关的五种基因型,每个一式三份,在原代猴肾细胞中三到五次,然后在MA104猴肾细胞系中十次。从50个标本中的13个,我们获得了代表所有五种基因型的25个轮状病毒抗原阳性谱系,与早期传代相比,在MA104细胞中更有效地复制。我们使用Illumina下一代测序和分析来鉴定在传代过程中出现的变体。在VP4中,变体编码所有P[8]轮状病毒保守的28个突变和所有五种基因型保守的12个突变。这些发现表明人类轮状病毒对MA104细胞的适应可能存在保守机制。在未来,这种保守的适应机制可用于研究人类轮状病毒生物学或有效生产疫苗。
    Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    腹泻,通常由轮状病毒(RV)和诺如病毒(NV)引起,是全球健康问题。本研究集中于济宁市2021年至2022年的RV和NV。在2021年至2022年之间,共收集了1052个腹泻样本。实时定量荧光逆转录酶-PCR检测RV-A,NVGI,和NVGII。对于RV-A阳性样本,VP7和VP4基因测序用于基因型分析,其次是进化树的建造。同样,对于NV-GII阳性样本,对VP1和RdRp基因进行测序以进行基因型分析,随后建造了进化树。在2021年至2022年之间,济宁市的检出率各不相同:仅RV-A(不包括RV-A和NVGII的合并感染)为7.03%,NVGI为0.10%,仅NVGII(不包括RV-A和NVGII的共感染)为5.42%,RV-A和NVGII共感染1.14%。最高的RV-A比率显示在≤1岁和2-5岁的儿童中。济宁,金乡县,和梁山县的RV-A比率明显较高,分别为24.37%(不包括RV-A和NVGII的合并感染)和18.33%(不包括RV-A和NVGII的合并感染),分别。济宁,曲阜市,微山没有RV-A阳性。微山的NVGII比率最高,为35.48%(不包括RV-A和NVGII的共感染)。基因型分析显示,2021年,G9P[8]和G2P[4]占主导地位,分别为94.44%和5.56%,分别。2022年,G8P[8],G9P[8],G1P[8]突出,为75.86%,13.79%,10.35%,分别。2021年,GII.3[P12],GII.4[P16],GII.4[P31]占71.42%,14.29%,和14.29%,分别。2022年,GII.3[P12]和GII.4[P16]分别占55.00%和45.00%,分别。RV-A和NV在不同的时间范围内显示出不同的模式,年龄组,和济宁市内的地区。从2021年到2022年,济宁市流行的RV-A和NVGII菌株也发生了基因型变化。建议对RV-A和NV进行持续监测,以进行有效的预防和控制。
    Diarrhea, often caused by viruses like rotavirus (RV) and norovirus (NV), is a global health concern. This study focuses on RV and NV in Jining City from 2021 to 2022. Between 2021 and 2022, a total of 1052 diarrhea samples were collected. Real-Time Quantitative Fluorescent Reverse Transcriptase-PCR was used to detect RV-A, NV GI, and NV GII. For RV-A-positive samples, VP7 and VP4 genes were sequenced for genotype analysis, followed by the construction of evolutionary trees. Likewise, for NV-GII-positive samples, VP1 and RdRp genes were sequenced for genotypic analysis, and evolutionary trees were subsequently constructed. Between 2021 and 2022, Jining City showed varying detection ratios: RV-A alone (excluding co-infection of RV-A and NV GII) at 7.03%, NV GI at 0.10%, NV GII alone (excluding co-infection of RV-A and NV GII) at 5.42%, and co-infection of RV-A and NV GII at 1.14%. The highest RV-A ratios were shown in children ≤1 year and 2-5 years. Jining, Jinxiang County, and Liangshan County had notably high RV-A ratios at 24.37% (excluding co-infection of RV-A and NV GII) and 18.33% (excluding co-infection of RV-A and NV GII), respectively. Jining, Qufu, and Weishan had no RV-A positives. Weishan showed the highest NV GII ratios at 35.48% (excluding co-infection of RV-A and NV GII). Genotype analysis showed that, in 2021, G9P[8] and G2P[4] were dominant at 94.44% and 5.56%, respectively. In 2022, G8P[8], G9P[8], and G1P[8] were prominent at 75.86%, 13.79%, and 10.35%, respectively. In 2021, GII.3[P12], GII.4[P16], and GII.4[P31] constituted 71.42%, 14.29%, and 14.29%, respectively. In 2022, GII.3[P12] and GII.4[P16] accounted for 55.00% and 45.00%, respectively. RV-A and NV showed varying patterns for different time frames, age groups, and regions within Jining. Genotypic shifts were also observed in prevalent RV-A and NV GII strains in Jining City from 2021 to 2022. Ongoing monitoring of RV-A and NV is recommended for effective prevention and control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    木瓜环斑病毒(PRSV)限制了全球的木瓜生产。以前,我们产生了携带PRSV外壳蛋白(CP)基因的杂交Tainung2号(TN-2)转基因品系,对PRSV菌株具有广泛的抗性。不幸的是,都是女性,在实际应用中对于种植者和消费者来说是不可接受的。根据我们报道的侧翼序列和新发布的木瓜基因组信息,在木瓜基因组的3号染色体的非编码区鉴定出CP-转基因插入物,并对侧翼序列进行了验证和扩展。雌性转基因品系16-0-1首先与亲本Sunrise品种回交六次,然后自交三次。利用从PRSVCP转基因和基因组侧翼序列开发的多级分子标记,在幼苗阶段表征CP转基因的存在和接合性。同时,雌雄同体基因型通过性别连锁标记鉴定。具有纯合的转基因和日出的园艺特性,通过组织培养(TC)繁殖选定的雌雄同体个体,并用作母体祖先与非转基因亲本品种泰国杂交,以产生具有半合子CP转基因的新杂交品种TN-2。通过TC微繁殖了三个选定的转基因TN雌雄同体个体,它们对来自台湾的不同PRSV菌株表现出广谱抗性,夏威夷,泰国,和墨西哥在温室条件下。选定的无性系TN-2#1,具有优良的园艺性状,在田间条件下也显示出对PRSV的完全抗性。这些选择的雌雄同体转基因TN-2的TC克隆在台湾和其他地方提供了新的培养系统。
    Papaya ringspot virus (PRSV) limits papaya production worldwide. Previously, we generated transgenic lines of hybrid Tainung No.2 (TN-2) carrying the coat protein (CP) gene of PRSV with broad resistance to PRSV strains. Unfortunately, all of them were female, unacceptable for growers and consumers in practical applications. With our reported flanking sequences and the newly released papaya genomic information, the CP-transgene insert was identified at a non-coding region in chromosome 3 of the papaya genome, and the flanking sequences were verified and extended. The female transgenic line 16-0-1 was first used for backcrossing with the parental Sunrise cultivar six times and then followed by selfing three times. With multi-level molecular markers developed from the PRSV CP transgene and the genomic flanking sequences, the presence and zygosity of the CP transgene were characterized at the seedling stage. Meanwhile, hermaphrodite genotype was identified by a sex-linked marker. With homozygotic transgene and horticultural properties of Sunrise, a selected hermaphrodite individual was propagated by tissue culture (TC) and used as maternal progenitor to cross with non-transgenic parental cultivar Thailand to generate a new hybrid cultivar TN-2 with a hemizygotic CP-transgene. Three selected hermaphrodite individuals of transgenic TN were micropropagated by TC, and they showed broad-spectrum resistance to different PRSV strains from Taiwan, Hawaii, Thailand, and Mexico under greenhouse conditions. The selected clone TN-2 #1, with excellent horticultural traits, also showed complete resistance to PRSV under field conditions. These selected TC clones of hermaphrodite transgenic TN-2 provide a novel cultivation system in Taiwan and elsewhere.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    气候变化,不可预测的天气模式,干旱正在耗尽全球一些地区的水资源,回收和再利用废水是一种不同目的的策略。为了抵消这一点,欧盟关于水回用的法规为农业灌溉使用再生水设定了最低要求,包括减少人类肠道病毒。在本研究中,几种人类肠道病毒的出现,包括人类诺如病毒基因组I(HuNoVGI),HuNoVGII,和轮状病毒(RV),通过使用(RT)-qPCR方法对进水废水和再生水样品进行监测,以及病毒粪便污染指标。此外,体细胞大肠杆菌的水平也被确定为可培养的病毒指标。为了评估潜在的病毒感染性,对污水样品进行衣壳完整性PMAxx-RT-qPCR方法的优化。60%的再生水样品中存在体细胞噬菌体,表明病毒灭活效率低下。PMAxx-RT-qPCR优化后,66%的样本检测出至少一种肠道病毒呈阳性,浓度范围为2.79至7.30Log10基因组拷贝(gc)/L。总的来说,大多数分析的再生水样品不符合欧盟现行法规,并且含有潜在的感染性病毒颗粒.
    Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自2017年以来,一种以内脏尿酸盐沉淀为特征的传染性鹅痛风疾病,主要由新型鹅星形病毒(GoAstV)感染引起,已经出现在中国的主要鹅产区。当前管理鹅痛风疾病的挑战主要是由于缺乏针对GoAstV病原体的快速有效检测方法。值得注意的是,免疫传感器在检测GoAstV中的潜在应用尚未被探索。在这里,通过使用购买的TiO2作为光活性材料和针对GoAstVP2蛋白的抗体作为特异性识别元件来制造无标记的PEC免疫传感器。首先,我们利用pET原核表达系统成功表达了GoAstVCHSH01的ORF2衣壳刺突结构域P2蛋白。同时,通过纯化蛋白制备了抗GoAstV衣壳P2蛋白的多克隆抗体。据我们所知,这是无标记光电化学免疫传感器方法在AstV检测中的首次建立和初步应用。PEC免疫传感器的线性范围为1.83fgmL-1至3.02ngmL-1,检测限(LOD)低至0.61fgmL-1。这种免疫传感器表现出高灵敏度,很大的特异性,在检测GoAstVP2蛋白时具有良好的稳定性。评价免疫传感器在实际样品检测中的实际应用,从鹅胚胎中收集尿囊液作为测试样品。结果表明,在8个阳性样本中,检测到一个假阴性结果,虽然两个阴性样本都被准确检测到,表明所构建的PEC免疫传感器具有良好的适用性和实际应用价值,为GoAstV的定性检测提供平台。
    Since 2017, an infectious goose gout disease characterized by urate precipitation in viscera, mainly caused by novel goose astrovirus (GoAstV) infection, has emerged in the main goose-producing region of China. The current challenge in managing goose gout disease is largely due to the absence of a rapid and efficient detection method for the GoAstV pathogen. Notably, the potential application of immunosensors in detecting GoAstV has not yet been explored. Herein, a label-free PEC immunosensor was fabricated by using purchased TiO2 as the photoactive material and antibody against GoAstV P2 proteins as the specific recognition element. First, we successfully expressed the capsid spike domain P2 protein of ORF2 from GoAstV CHSH01 by using the pET prokaryotic expression system. Meanwhile, the polyclonal antibody against GoAstV capsid P2 protein was produced by purified protein. To our knowledge, this is the first establishment and preliminary application of the label-free photoelectrochemical immunosensor method in the detection of AstV. The PEC immunosensor had a linear range of 1.83 fg mL-1 to 3.02 ng mL-1, and the limit of detection (LOD) was as low as 0.61 fg mL-1. This immunosensor exhibited high sensitivity, great specificity, and good stability in detecting GoAstV P2 proteins. To evaluate the practical application of the immunosensor in real-world sample detection, allantoic fluid from goose embryos was collected as test samples. The results indicated that of the eight positive samples, one false negative result was detected, while both negative samples were accurately detected, suggesting that the constructed PEC immunosensor had good applicability and practical application value, providing a platform for the qualitative detection of GoAstV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号