Baculovirus

杆状病毒
  • 文章类型: Journal Article
    哺乳动物细胞系是生产需要特定糖基化模式的复杂蛋白质的最佳选择之一。质粒DNA转染和稳定细胞系经常用于重组蛋白生产,但是它们在大规模上很昂贵,或者可能变得耗时,分别。BacMam杆状病毒(BV)是在哺乳动物细胞中生产重组蛋白的安全且具有成本效益的平台。生成BacMamBV的过程很简单,类似于“昆虫”BV的生成,不同的商业平台。尽管有几种方案描述了在贴壁细胞系中BacMamBV的重组蛋白表达,关于悬浮细胞的信息有限。因此,定义在具有BacMamBV的悬浮细胞培养物中产生重组蛋白的条件是相关的,其促进生物过程转移到更大体积。这里,我们描述了在悬浮HEK293细胞中产生高滴度BacMamBV原液并产生重组蛋白的方法。
    Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of \"insect\" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过使用CRISPR技术进行有效的基因组编辑需要将多种遗传编码的组分同时有效地递送到哺乳动物细胞。在所有编辑方法中,素编辑(PE)具有执行无缝基因组重写的独特潜力,在没有DNA双链断裂(DSB)的情况下。有效的PE递送至哺乳动物细胞所需的货物容量与传统病毒递送载体的有限包装容量不同。相比之下,杆状病毒(BV)具有很大的合成DNA容量,可以有效地转导哺乳动物细胞。在这里,我们描述了用于哺乳动物细胞中多重引物编辑的杆状病毒载体组装方案。
    Efficient genome editing by using CRISPR technologies requires simultaneous and efficient delivery of multiple genetically encoded components to mammalian cells. Amongst all editing approaches, prime editing (PE) has the unique potential to perform seamless genome rewriting, in the absence of DNA double-strand breaks (DSBs). The cargo capacity required for efficient PE delivery to mammalian cells stands at odd with the limited packaging capacity of traditional viral delivery vectors. By contrast, baculovirus (BV) has a large synthetic DNA capacity and can efficiently transduce mammalian cells. Here we describe a protocol for the assembly of baculovirus vectors for multiplexed prime editing in mammalian cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本章概述了一种快速检测方法,以确定您的杆状病毒原种的病毒滴度。用荧光标记的gp64抗体染色细胞允许基于流式细胞仪的杆状病毒感染的昆虫细胞的定量。在这个试验中,用十倍连续稀释的测试病毒原液感染Sf9细胞,和杆状病毒滴度是根据接种后13至18小时感染细胞与未感染细胞的比率计算的。
    This chapter outlines a rapid detection method to determine the virus titer of your baculovirus stock. Staining of cells with fluorescently labeled gp64 antibody allows for flow cytometer-based quantitation of baculovirus-infected insect cells. In this assay, Sf9 cells are infected with tenfold serial dilutions of the test virus stock, and baculovirus titers are calculated based on the ratio of infected to uninfected cells 13 to 18 h after inoculation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有许多方法可用于确定您的杆状病毒库存的感染滴度。TCID50方法是一种简单的终点稀释方法,可确定产生细胞病变效应或杀死50%接种的昆虫细胞所需的杆状病毒病毒量。将连续稀释的杆状病毒原液添加到在96孔板中培养的Sf9细胞中,并在感染后3-5天,监测细胞的细胞死亡或细胞病变效应。然后可以通过该方法中所述的Reed-Muench方法计算滴度。
    There are many methods that can be used to determine the infectious titer of your baculovirus stock. The TCID50 method is a simple end-point dilution method that determines the amount of baculovirus virus needed to produce a cytopathic effect or kill 50% of inoculated insect cells. Serial dilutions of baculovirus stock are added to Sf9 cells cultivated in 96-well plates and 3-5 days after infection, cells are monitored for cell death or cytopathic effect. The titer can then be calculated by the Reed-Muench method as described in this method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当定义为噬斑形成单位(PFU)时,噬斑测定方法能够定量感染性杆状病毒。它允许确定以特定的感染复数(MOI)感染细胞所需的感染性病毒的量。将连续稀释的杆状病毒原液添加到Sf9细胞单层中,然后添加5%琼脂糖覆盖。感染后6天,使用中性红溶液观察到明显的感染光晕。在这里,我们描述了在rAAV表达盒中携带转基因的重组杆状病毒表达载体(rBEV)的定量。用这种方法获得PFU的可重复定量。
    Plaque assay method enables the quantification of infectious baculovirus when defined as plaque forming units (PFU). It allows to determine the amount of infectious virus needed to infect the cells at a specific multiplicity of infection (MOI). Serial dilutions of baculovirus stock are added to the Sf9 cells monolayer followed by addition of 5% Agarose overlay. Six days after infection clear infection halos are observed using a neutral red solution. Here we describe the quantification of recombinant baculovirus expression vector (rBEV) carrying a transgene in an rAAV expression cassette. Reproducible quantification of PFU is obtained with this method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杆状病毒表达载体系统(BEVS)与培养的昆虫细胞一起使用,以产生各种各样的异源蛋白,它可以在瞬时感染过程中分泌到培养基中(Smith等人。MolCellBiol12:2156-2165,1983)。当感染过程完成时,离心通常用于从耗尽的昆虫细胞中分离所需的蛋白质。收获的上清液中的所需产物被杆状病毒污染,氨基酸,脂质,洗涤剂,油,从感染过程中裂解的细胞,来自昆虫细胞的基因组DNA,和蛋白酶,由于杆状病毒感染过程的裂解性质和许多其他污染物(Ikonomou等人。ApplMicrobiolBiotechnol62:1-20,2003)。存在于具有所需分泌蛋白的离心上清液中的所有这些污染物使得初始色谱捕获步骤对于所需蛋白的有效纯化至关重要。将概述使用阳离子交换色谱对微酸性分泌蛋白的纯化方案(Lundanes等人。色谱法:基本原理,样品制备和相关方法,第一edn。威利,2013).
    The Baculovirus Expression Vector System (BEVS) is used with cultured insect cells to produce a wide variety of heterologous proteins, which can be secreted into the culture medium during the transient infection process (Smith et al. Mol Cell Biol 12:2156-2165, 1983). When the infection process is complete, centrifugation is often used to separate the desired protein from the spent insect cells. The desired product in the harvested supernatant is contaminated with baculovirus, amino acids, lipids, detergents, oils, lysed cells from the infection process, genomic DNA from the insect cells, and proteases due to the lytic nature of the baculovirus infection process and many other contaminants (Ikonomou et al. Appl Microbiol Biotechnol 62:1-20, 2003). All these contaminants that are present in the centrifuged supernatant with the desired secreted protein make the initial chromatographic capture step critical for effective purification of the desired protein. A purification scheme will be outlined for a slightly acidic secreted protein using cation exchange chromatography (Lundanes et al. Chromatography: basic principles, sample preparations and related methods, 1st edn. Wiley, 2013).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    昆虫细胞-杆状病毒表达载体(IC-BEV)平台使得能够进行小规模研究和大规模商业生产重组蛋白和治疗性生物制品,包括基于重组腺相关病毒(rAAV)的基因递送载体。由于其简单性,该平台的广泛使用可与其他基于哺乳动物细胞系的平台相媲美。高产,可比较的质量属性,和强大的生物处理功能。在这一章中,我们描述了使用One-Bac平台的最新修改之一的rAAV生产方案,其由携带AAVRep2/Cap5基因的稳定转化的Sf9细胞系组成,所述AAVRep2/Cap5基因在感染后被单个重组杆状病毒表达载体诱导,所述载体含有感兴趣的转基因(rAAV基因组)。总体方案包括基本步骤,包括rBEV工作库存准备,rAAV生产,和基于离心的细胞培养裂解物的澄清。相同的协议也可以应用于使用传统的Three-Bac的rAAV载体生产,两个Bac,和Mono-Bac平台,无需进行重大更改。
    The insect cell-baculovirus expression vector (IC-BEV) platform has enabled small research-scale and large commercial-scale production of recombinant proteins and therapeutic biologics including recombinant adeno-associated virus (rAAV)-based gene delivery vectors. The wide use of this platform is comparable with other mammalian cell line-based platforms due to its simplicity, high-yield, comparable quality attributes, and robust bioprocessing features. In this chapter, we describe a rAAV production protocol employing one of the recent modifications of the One-Bac platform that consists of a stable transformed Sf9 cell line carrying AAV Rep2/Cap5 genes that are induced upon infection with a single recombinant baculovirus expression vector harboring the transgene of interest (rAAV genome). The overall protocol consists of essential steps including rBEV working stock preparation, rAAV production, and centrifugation-based clarification of cell culture lysate. The same protocol can also be applied for rAAV vector production using traditional Three-Bac, Two-Bac, and Mono-Bac platforms without requiring significant changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为商业疫苗开发的一部分,昆虫细胞表达已成功用于生产病毒抗原。作为表达式宿主,昆虫细胞通过呈现进行翻译后修饰(PTM)(例如糖基化和磷酸化)的能力而提供优于细菌系统的优势,从而保留蛋白质的天然功能性,特别是对于病毒抗原。昆虫细胞在精确模拟一些需要复杂糖基化模式的蛋白质方面具有局限性。昆虫细胞工程策略的最新进展可以在一定程度上克服这一限制。此外,成本效率,时间线,安全,和过程可采用性使昆虫细胞成为生产人类和动物疫苗亚基抗原的首选平台。在这一章中,我们描述了用于人类疫苗开发的SARS-CoV2刺突胞外域亚基抗原和病毒样颗粒(VLP)的产生方法,基于猪圆环病毒2(PCV2d)抗原的衣壳蛋白,用于使用两种不同的昆虫细胞系开发动物疫苗,分别为SF9和Hi5。该方法证明了昆虫细胞作为表达宿主的灵活性和广泛适用性。
    Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杆状病毒表达载体系统(BEVS)是昆虫细胞中蛋白质表达的强大平台。一个普遍的应用是表达复杂的蛋白质结构,相互作用的蛋白质。与多种杆状病毒共感染可以产生复杂的结构,促进结构-功能研究,允许增加昆虫细胞的功能,和临床相关产物如病毒样颗粒(VLP)和腺相关病毒载体(AAV)的生产。成功的共感染需要产生健壮且定量良好的重组杆状病毒原种。通过同源重组生产病毒,结合病毒滴度的严格量化,允许同步共感染产生高端产品滴度。在这一章中,我们描述了用于产生和定量高质量重组杆状病毒原种和成功共感染的简化工作流程,如昆虫细胞培养物中双重感染细胞的优势所定义。
    The baculovirus expression vector system (BEVS) is a powerful platform for protein expression in insect cells. A prevalent application is the expression of complex protein structures consisting of multiple, interacting proteins. Coinfection with multiple baculoviruses allows for production of complex structures, facilitating structure-function studies, allowing augmentation of insect cell functionality, and production of clinically relevant products such as virus-like particles (VLPs) and adeno-associated viral vectors (AAV). Successful coinfections require the generation of robust and well-quantified recombinant baculovirus stocks. Virus production through homologous recombination, combined with rigorous quantification of viral titers, allows for synchronous coinfections producing high end-product titers. In this chapter, we describe the streamlined workflow for generation and quantification of high-quality recombinant baculovirus stocks and successful coinfection as defined by a preponderance of dually infected cells in the insect cell culture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杆状病毒表达载体系统(BEVS)现已在研究实验室和行业中得到认可,这可以归因于它的许多关键特征,包括载体的有限宿主范围,它们对人类的非致病性,以及可以在昆虫细胞中实现的哺乳动物样翻译后修饰(PTM)。事实上,该系统充当原核生物和高等真核生物之间的中间地带,以产生复杂的生物制品。尽管如此,与其他平台相比,BEVS的工业使用滞后。我们推测,造成这种情况的原因之一是缺乏可以补充杆状病毒载体研究的遗传工具,而第二个原因是杆状病毒载体与所需产物的共同生产。虽然已经进行了一些遗传增强以改善BEVS作为生产平台,基因组仍未得到严格审查。本章概述了基于CRISPR-Cas9的转染感染测定的方法,以探测杆状病毒基因组中必需/非必需基因,这些基因可以在选择的启动子下潜在地最大化外源基因表达。
    The baculovirus expression vector system (BEVS) has now found acceptance in both research laboratories and industry, which can be attributed to many of its key features including the limited host range of the vectors, their non-pathogenicity to humans, and the mammalian-like post-translational modification (PTMs) that can be achieved in insect cells. In fact, this system acts as a middle ground between prokaryotes and higher eukaryotes to produce complex biologics. Still, industrial use of the BEVS lags compared to other platforms. We have postulated that one reason for this has been a lack of genetic tools that can complement the study of baculovirus vectors, while a second reason is the co-production of the baculovirus vector with the desired product. While some genetic enhancements have been made to improve the BEVS as a production platform, the genome remains under-scrutinized. This chapter outlines the methodology for a CRISPR-Cas9-based transfection-infection assay to probe the baculovirus genome for essential/nonessential genes that can potentially maximize foreign gene expression under a promoter of choice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号