Asymmetric Cell Division

不对称细胞分裂
  • 文章类型: Journal Article
    本文简要介绍了迄今为止已知的年龄保护和恢复活力的方法,介绍其主要机制和局限性。为了克服复兴过程的主要局限性,可以使用称为“细胞自动克隆”的过程。“所提出的复兴方法的原理如下:细胞核自克隆的周期性过程在细胞基因组中开始,形成一个不稳定的子拷贝并随后自我消除。在这种情况下,细胞分裂过程在细胞核发散阶段停止,而细胞本身没有随后的物理分离。这对有丝分裂后的细胞尤其重要,其中,本体发生程序的“单向”线循环成“环”将意味着它们过渡到可再生细胞。自克隆机制的原型可能是细胞适应随时间增加的损伤量的已知方式。这些是多倍体和不对称细胞分裂,依靠它有可能获得一个可再生的细胞核分裂过程,当分裂的结果只剩下原始的核。虽然这不是一个简单的任务,使用可以从分子和细胞生物学和遗传学领域提出现代知识的方法,有可能的解决途径。要实现这样的目标需要做大量的工作,但是预期的结果证明了这一点。
    The article gives a brief description of geroprotection and rejuvenation methods known to date, presenting their main mechanisms and limitations. To overcome the main limitations of the process of rejuvenation, it is possible to use a process called \"cell autocloning.\" The principle of the proposed method of rejuvenation is as follows: a periodic process of autocloning of the cell nucleus is initiated in the cellular genome with the formation of one unstable daughter copy and its subsequent self-elimination. In this case, the process of cell division stops in the phase of nuclei divergence without subsequent physical separation of the cell itself. This is especially important for postmitotic cells, where the looping of the \"unidirectional\" line of the ontogenesis program into a \"ring\" will mean their transition into renewable cells. The prototype for autocloning mechanisms could be the already known ways in which cells adapt to the increasing amount of their damage over time. These are polyploidy and asymmetric cell division, relying on which it is possible to obtain a renewable process of cell nuclei division, when only the original nucleus remains as a result of division. Although this is not a simple task, there are possible pathways to its solution using approaches that can suggest modern knowledge from the field of molecular and cell biology and genetics. The realization of such a goal will require a lot of work, but the expected result justifies it.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不对称细胞分裂(ACD)在发育中起着关键作用,组织稳态,和干细胞维护。新出现的证据表明,长链非编码RNA(lncRNAs)是ACD的关键调节因子,协调控制细胞命运决定的复杂分子机制。这篇综述总结了当前的文献,以阐明lncRNAs在各种生物学环境中调节ACD的不同作用。lncRNAs介导的不对称细胞分裂的调控机制,包括它们与蛋白质效应物的相互作用,表观遗传调控,探索亚细胞定位。此外,我们讨论了lncRNAs失调在介导导致肿瘤发生的ACD中的意义。通过整合来自不同实验模型和细胞类型的发现,这篇综述提供了对lncRNAs在控制不对称细胞分裂中的多方面作用的见解,揭示基本的生物过程。该领域的进一步研究可能导致开发针对失调的lncRNAs的新疗法,以恢复适当的细胞分裂和功能。调节ACD的lncRNAs的知识可能通过靶向参与ACD的特定lncRNAs来彻底改变再生医学和癌症治疗领域。通过解开lncRNAs和细胞过程之间复杂的相互作用,可能会发现精准医学方法的潜在新机遇。
    Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    产生具有特定功能的细胞群的分裂和分化事件通常作为发育程序的一部分发生。可以用一系列隔室来表示。隔间是一组具有共同特征的细胞;共享,例如,空间位置或表型。区分事件是从一个隔室到下一个隔室的过渡。细胞也可能死亡或分裂。我们考虑三种不同类型的分裂事件:(i)两个子细胞继承母亲的表型(自我更新),(ii)只有一个女儿改变表型(不对称分裂),和(iii)其中两个女儿改变表型(对称分裂)。每个区室的自我更新概率决定了单个细胞的后代是否,穿过隔间的序列,是有限的或无限制地增长。我们用概率生成函数分析了后代的随机动力学。在自我更新的情况下,在任何分裂事件后跟踪其中一个女儿,我们可以在任何时候构建只包含一个细胞的生命线。我们分析了沿着这些路线划分的数量,以及线路以死亡事件终止的隔间。分析和数值模拟应用于造血干细胞逐渐分化的五室模型和胸腺细胞发育模型:从双前阳性到单阳性(SP)细胞,分叉到SP4或SP8在序列的最后一个区室。
    Division and differentiation events by which cell populations with specific functions are generated often take place as part of a developmental programme, which can be represented by a sequence of compartments. A compartment is the set of cells with common characteristics; sharing, for instance, a spatial location or a phenotype. Differentiation events are transitions from one compartment to the next. Cells may also die or divide. We consider three different types of division events: (i) where both daughter cells inherit the mother\'s phenotype (self-renewal), (ii) where only one of the daughters changes phenotype (asymmetric division), and (iii) where both daughters change phenotype (symmetric division). The self-renewal probability in each compartment determines whether the progeny of a single cell, moving through the sequence of compartments, is finite or grows without bound. We analyse the progeny stochastic dynamics with probability generating functions. In the case of self-renewal, by following one of the daughters after any division event, we may construct lifelines containing only one cell at any time. We analyse the number of divisions along such lines, and the compartment where lines terminate with a death event. Analysis and numerical simulations are applied to a five-compartment model of the gradual differentiation of hematopoietic stem cells and to a model of thymocyte development: from pre-double positive to single positive (SP) cells with a bifurcation to either SP4 or SP8 in the last compartment of the sequence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Notch通讯通路,100多年前在果蝇中发现的,在后生动物中调节了广泛的谱系内决策。果蝇机械感觉器官前体的分裂是不对称细胞分裂的原型,其中差异Notch激活在胞质分裂时发生。这里,我们回顾了上皮细胞极性的分子机制,细胞周期和胞内运输参与控制方向性,胞质分裂中机械敏感性Notch受体激活的亚细胞定位和时间性。
    The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不对称细胞分裂(ACDs)通过表观遗传机制产生具有相同遗传信息但不同细胞命运的两个子细胞。然而,将不同的表观遗传信息分为子细胞的过程尚不清楚.这里,我们证明,在秀丽隐杆线虫的ACD过程中,核小体重塑和脱乙酰酶(NuRD)复合物不对称地分离到存活的子细胞中,而不是凋亡的子细胞中。NuRD的缺失通过EGL-1-CED-9-CED-4-CED-3通路触发细胞凋亡,而NuRD的异位获得使凋亡的子细胞能够存活。我们确定液泡H-腺苷三磷酸酶(V-ATPase)复合物是NuRD不对称分离的关键调节剂。V-ATP酶与NuRD相互作用,并不对称地分离到存活的子细胞中。抑制V-ATPase破坏细胞溶质pH不对称性和NuRD不对称性。我们建议V-ATPase的不对称分离可能会导致两个子细胞中不同的酸化水平。实现不对称表观遗传,指定他们各自的生与死命运。
    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD\'s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    复杂的微环境信号在组织形态发生过程中协调影响细胞行为和命运。然而,关于特定局部生态位信号如何影响细胞行为和命运的潜在机制还没有完全理解,由于缺乏体外平台,定量,空间,并独立操纵个体生态位信号。这里,基于蛋白质的3D单细胞微生态位(3D-SCμN)的微阵列,精确设计的生物物理和生化生态位信号,通过多光子微加工和微图案化技术进行微印刷。小鼠胚胎干细胞(mESC)作为模型细胞,以研究局部生态位信号如何影响干细胞的行为和命运。通过精确设计3DSCμNs的内部微结构,我们证明细胞分裂方向可以由生物物理小生境信号控制,以细胞形状独立的方式。将细胞分裂方向限制在主导轴后,单个mESC暴露于不对称的生化生态位信号,具体来说,一侧的细胞-细胞粘附分子和另一侧的细胞外基质。我们证明,对称破缺(不对称)小生境信号成功触发细胞极性形成,并偏置不对称细胞分裂的方向,有丝分裂过程导致两个具有不同命运的子细胞,在mESC中。
    Intricate microenvironment signals orchestrate to affect cell behavior and fate during tissue morphogenesis. However, the underlying mechanisms on how specific local niche signals influence cell behavior and fate are not fully understood, owing to the lack of in vitro platform able to precisely, quantitatively, spatially, and independently manipulate individual niche signals. Here, microarrays of protein-based 3D single cell micro-niche (3D-SCμN), with precisely engineered biophysical and biochemical niche signals, are micro-printed by a multiphoton microfabrication and micropatterning technology. Mouse embryonic stem cell (mESC) is used as the model cell to study how local niche signals affect stem cell behavior and fate. By precisely engineering the internal microstructures of the 3D SCμNs, we demonstrate that the cell division direction can be controlled by the biophysical niche signals, in a cell shape-independent manner. After confining the cell division direction to a dominating axis, single mESCs are exposed to asymmetric biochemical niche signals, specifically, cell-cell adhesion molecule on one side and extracellular matrix on the other side. We demonstrate that, symmetry-breaking (asymmetric) niche signals successfully trigger cell polarity formation and bias the orientation of asymmetric cell division, the mitosis process resulting in two daughter cells with differential fates, in mESCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结论:BIG通过桥接拟南芥根中生长素梯度与SHR丰度来调节地面组织形成分裂。拟南芥根中皮质/内胚层缩写(CEI)和CEI子细胞(CEID)的形成分裂受纵向生长素梯度和径向短根(SHR)丰度的协调控制。然而,这种协调背后的机制仍然知之甚少。在这项研究中,我们证明BIG通过桥接生长素梯度与SHR丰度来调节地面组织形成性分裂。BIG基因突变抑制细胞周期进程,延迟地面组织内的形成分裂,并损害内胚层和皮质身份的建立。此外,我们发现生长素对BIG表达的抑制作用,以SHR依赖性方式触发CYCLIND6;1(CYCD6;1)激活。此外,视网膜母细胞瘤相关(RBR)的降解受BIG和CYCD6共同调控;1.BIG功能的丧失导致RBR蛋白积累,不利地影响SHR/SCARECROW(SCR)蛋白复合物和CEI/CEID形成分裂。总的来说,这些发现揭示了一个基本机制,其中BIG错综复杂地协调SHR/SCR和生长素之间的相互作用,转向拟南芥根组织内的地面组织图案。
    CONCLUSIONS: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin\'s suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    造血干细胞(HSC)持续补充具有有限寿命的成熟血细胞。为了维持HSC隔室,同时确保分化细胞的输出,HSC经历不对称细胞分裂(ACD),产生两个不同命运的子细胞:一个将增殖并产生分化的细胞后代,并且将返回到静止状态以维持HSC隔室。需要MEK/ERK和mTORC1途径之间的平衡以确保HSC稳态。这里,我们表明,这些途径的激活在有丝分裂前的HSC中空间分离,并且在ACD期间遗传不均。遗传和化学扰动的组合表明,ERK依赖性机制决定了影响极性的途径之间的平衡,扩散,和新陈代谢,从而确定不对称分裂HSC的频率。我们的数据确定了在不对称分裂水平上调节HSC命运决定的可药用靶标。
    Hematopoietic stem cells (HSCs) continuously replenish mature blood cells with limited lifespans. To maintain the HSC compartment while ensuring output of differentiated cells, HSCs undergo asymmetric cell division (ACD), generating two daughter cells with different fates: one will proliferate and give rise to the differentiated cells\' progeny, and one will return to quiescence to maintain the HSC compartment. A balance between MEK/ERK and mTORC1 pathways is needed to ensure HSC homeostasis. Here, we show that activation of these pathways is spatially segregated in premitotic HSCs and unequally inherited during ACD. A combination of genetic and chemical perturbations shows that an ERK-dependent mechanism determines the balance between pathways affecting polarity, proliferation, and metabolism, and thus determines the frequency of asymmetrically dividing HSCs. Our data identify druggable targets that modulate HSC fate determination at the level of asymmetric division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发育过程中不同细胞命运的产生取决于祖细胞的不对称细胞分裂。在果蝇的中枢和周围神经系统中,分别称为成神经细胞或感觉器官前体的祖细胞在有丝分裂期间使用PAR极性来控制其子细胞中的细胞命运决定。极性和细胞周期是如何耦合的,以及细胞周期机制如何调节PAR蛋白功能和细胞命运决定尚不清楚。这里,我们产生了CDK1的类似敏感等位基因,并揭示了其部分抑制作用减弱但不会消除胚胎和幼虫神经母细胞的顶端极性,并导致命运决定子极化的缺陷。我们描述了一种新的Bazooka体内磷酸化,果蝇PAR-3的同源物,在Serine180上,一个共有的CDK磷酸化位点。在某些组织背景下,Serine180的磷酸化发生在不对称分裂的细胞中,但不发生在对称分裂的邻居中。在成神经细胞中,Serine180磷酸盐破坏基底极化的时间。Serine180磷酸盐还影响感觉器官前体的规格和二元细胞命运确定以及Baz在其不对称细胞分裂过程中的定位。最后,我们显示CDK1在体外磷酸化人PAR-3上的丝氨酸-S180和等效丝氨酸。
    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞大小调节已经在对称分裂的细胞中得到了广泛的研究,但是,在不对称分裂的细菌中控制大小不对称的机制仍然难以捉摸。这里,我们研究了阴毛杆菌不对称划分的控制,一种细菌,在分裂时产生具有不同命运和形态的子细胞。通过对多代人生长和形状数据的综合分析,我们揭示了一个严格调控的细胞大小分配机制。我们发现,通过差异增长,可以在划分周期的早期迅速纠正划分站点定位的错误。我们的分析揭示了子细胞区室的大小与其生长速率之间的负反馈,其中较大的区室生长较慢以在划分时实现稳态尺寸分配比。为了解释这些观察,我们提出了一个差异增长的机制模型,其中等量的生长调节剂被分配到大小不等的子细胞区室中,并通过不依赖于大小的合成随时间保持。
    Cell size regulation has been extensively studied in symmetrically dividing cells, but the mechanisms underlying the control of size asymmetry in asymmetrically dividing bacteria remain elusive. Here, we examine the control of asymmetric division in Caulobacter crescentus, a bacterium that produces daughter cells with distinct fates and morphologies upon division. Through comprehensive analysis of multi-generational growth and shape data, we uncover a tightly regulated cell size partitioning mechanism. We find that errors in division site positioning are promptly corrected early in the division cycle through differential growth. Our analysis reveals a negative feedback between the size of daughter cell compartments and their growth rates, wherein the larger compartment grows slower to achieve a homeostatic size partitioning ratio at division. To explain these observations, we propose a mechanistic model of differential growth, in which equal amounts of growth regulators are partitioned into daughter cell compartments of unequal sizes and maintained over time via size-independent synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号