Alkyl and Aryl Transferases

烷基和芳基转移酶
  • 文章类型: Journal Article
    丙烯酰转移酶是将5碳前体分子结合成不同长度的线性类异戊二烯的萜烯合酶,用作萜烯环化酶的底物。催化令人着迷的环化反应以形成多种萜烯天然产物的酶。萜烯及其衍生物构成最大类别的天然产物,并且在自然界和各种商业用途中具有无数的功能。一类新出现的双功能萜烯合酶包含通过单条多肽链中的无序接头连接的异戊烯基转移酶和环化酶结构域。来自苦杏仁的Fusicocandene合酶(PaFS)是该亚类中特征最明确的成员之一,可作为探索结构-功能关系的模型系统。已经使用多种生物物理技术对PaFS进行了结构表征。该酶寡聚形成六个或八个异戊烯基转移酶结构域的稳定核心,产生20碳线性类异戊二烯,香叶基香叶基二磷酸(G3GPP),然后转移到环化酶结构域以生成fusicocondiene。环化酶结构域在随机展开的位置和异戊烯基转移酶相关的位置之间处于动态平衡;簇通道涉及从异戊烯基转移酶核心到环化酶结构域的G3GPP转运。在这一章中,我们概述了我们正在开发的方法来询问PaFS中集群通道的性质,包括酶活性和产品分析测定,工程连接异戊二烯转移酶和环化酶结构域的接头片段的方法,并通过低温EM进行结构分析。
    Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    萜烯合酶(TS)的结构生物学研究为了解其在生产具有多环系统和多个手性中心的多种萜烯产物中的催化机理提供了有用的基础。然而,与迄今为止发现的>95,000种萜类化合物相比,TS的结构很少得到解决,对其催化机理的理解滞后。我们在这里(I)介绍基本的催化逻辑,结构架构,和TS的金属结合保守基序;(Ii)提供详细的实验程序,在基因克隆和质粒构建中,蛋白质纯化,结晶,X射线衍射数据收集和结构阐明,用于TSs的结构生物学研究;(iii)讨论基于结构的工程和TSs的从头设计在产生有价值的萜烯分子方面的前景,这是化学合成无法轻易实现的。
    Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大萜合酶(large-TS)是新的TS家族。发现的第一个大型TS来自枯草芽孢杆菌(BsuTS),它参与了C35倍半萜的生物合成。大TS是仅有的能够生物合成芝麻的酶,并且与规范的I类和II类TS不具有任何序列同源性。因此,大TSs的研究有望扩大萜烯领域的化学空间。在这一章中,我们描述了用于识别大型TS的实验方法,以及它们的功能和结构分析。此外,已经描述了几种与大TS底物的生物合成有关的酶。
    Large terpene synthases (large-TSs) are a new family of TSs. The first large-TS discovered was from Bacillus subtilis (BsuTS), which is involved in the biosynthesis of a C35 sesquarterpene. Large-TSs are the only enzymes that enable the biosynthesis of sesquarterpenes and do not share any sequence homology with canonical Class I and II TSs. Thus, the investigation of large-TSs is promising for expanding the chemical space in the terpene field. In this chapter, we describe the experimental methods used for identifying large-TSs, as well as their functional and structural analyses. Additionally, several enzymes related to the biosynthesis of large-TS substrates have been described.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钒依赖性卤代过氧化物酶(VHPOs)是一个独特的酶家族,利用钒酸盐,含水卤离子,和过氧化氢以产生可并入富电子有机基质中的亲电子卤素物质。这种卤素物质可以与萜烯底物反应,并以使人联想到II类萜合酶的方式引发卤诱导的环化。虽然并非所有VHPO都以这种身份行事,来自藻类和放线菌物种的几个值得注意的例子已经被表征为催化萜烯和类萜烯底物上的区域选择性和对映选择性反应,通过单一酶的作用产生复杂的卤化环萜烯。在这篇文章中,我们描述的表达,净化,和NapH4的化学分析,NapH4是一种难以表达的表征的VHPO,可催化氯盐诱导的其类硫萜类底物的环化。
    Vanadium-dependent haloperoxidases (VHPOs) are a unique family of enzymes that utilize vanadate, an aqueous halide ion, and hydrogen peroxide to produce an electrophilic halogen species that can be incorporated into electron rich organic substrates. This halogen species can react with terpene substrates and trigger halonium-induced cyclization in a manner reminiscent of class II terpene synthases. While not all VHPOs act in this capacity, several notable examples from algal and actinobacterial species have been characterized to catalyze regio- and enantioselective reactions on terpene and meroterpenoid substrates, resulting in complex halogenated cyclic terpenes through the action of single enzyme. In this article, we describe the expression, purification, and chemical assays of NapH4, a difficult to express characterized VHPO that catalyzes the chloronium-induced cyclization of its meroterpenoid substrate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Pyr4家族萜烯环化酶是非典型的跨膜II类萜烯环化酶,可催化微生物萜类生物合成中的各种环化反应,如黄酮类化合物。然而,尽管这些环化酶广泛分布在微生物中,它们的三维结构尚未确定,可能是由于这些酶的跨膜位置。在这一章中,我们描述了基于使用AlphaFold2生成的模型结构的跨膜萜烯环化酶的功能分析程序。我们用了Adri,需要的Pyr4家族萜烯环化酶的生物合成和它的同源物,作为一个例子。
    Pyr4-family terpene cyclases are noncanonical transmembrane class II terpene cyclases that catalyze a variety of cyclization reactions in the biosynthesis of microbial terpenoids, such as meroterpenoids. However, although these cyclases are widely distributed in microorganisms, their three-dimensional structures have not been determined, possibly due to the transmembrane locations of these enzymes. In this chapter, we describe procedures for the functional analysis of transmembrane terpene cyclases based on their model structures generated using AlphaFold2. We used AdrI, the Pyr4-family terpene cyclase required for the biosynthesis of andrastin A and its homologs, as an example.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    膜结合蛋白的表达和纯化仍然是一个挑战,限制了酶学的努力。在自然界中发现的许多蛋白质的生化功能方面造成了巨大的知识空白。因此,由于纯化体外表征活性酶所需的实验障碍,细菌UbiA萜烯合酶(TS)的研究受到限制。以前的工作采用微粒体或粗膜部分来测试酶活性;然而,这些方法可能是劳动密集型的,需要使用超速离心机,或者可能不适用于所有膜结合TS。我们在这里详细介绍了通过在大肠杆菌中采用前体过量生产系统来实现膜相关UbiATS的体内表达和生化表征的替代策略。
    Expression and purification of membrane-bound proteins remains a challenge and limits enzymology efforts, contributing to a substantial knowledge gap in the biochemical functions of many proteins found in nature. Accordingly, the study of bacterial UbiA terpene synthases (TSs) has been limited due to the experimental hurdles required to purify active enzymes for characterization in vitro. Previous work employed the use of microsomes or crude membrane fractions to test enzyme activity; however, these methods can be labor intensive, require access to an ultracentrifuge, or may not be suitable for all membrane-bound TSs. We detail here an alternative strategy for the in vivo expression and biochemical characterization of the membrane associated UbiA TSs by employing a precursor overproduction system in Escherichia coli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    珊瑚萜烯是具有许多应用的重要分子。这里,我们描述了一种强大而简单的方法来大规模生产珊瑚萜烯支架。作为该方法的一个例子,在这里我们发现,快递,并进一步表征klysimplexinR合成酶,扩展已知的软珊瑚萜烯环化酶的酶学。我们希望所描述的基本方法将能够对珊瑚萜烯及其生物合成基因的功能进行广泛的基础研究,以及生物医学和技术重要分子的商业开发。
    Coral terpenes are important molecules with numerous applications. Here, we describe a robust and simple method to produce coral terpene scaffolds at scale. As an example of the approach, here we discover, express, and characterize further klysimplexin R synthases, expanding the known enzymology of soft coral terpene cyclases. We hope that the underlying method described will enable widespread basic research into the functions of coral terpenes and their biosynthetic genes, as well as the commercial development of biomedically and technologically important molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Octocorals是海洋环境中萜类化合物最多产的来源,迄今为止,从门中已知的4000多种不同的化合物。然而,其生产的生化和遗传起源仍然难以捉摸,直到最近的研究表明,八角珊瑚在其自身的染色体DNA中编码负责萜类化合物生物合成的基因,而不是最初提出的来自微生物共生体。鉴定出的珊瑚基因包括编码一组新的I类萜烯环化酶(TC)的基因,这些酶聚集在其他定制酶的候选类别中。系统发育分析将八珊瑚TC确立为单系进化枝,与植物的TC不同,细菌,和其他生物。新发现的TC群似乎在八珊瑚中无处不在,并且在进化上很古老。鉴于最近发现的八珊瑚萜类生物化学和目前只有有限的基因组数据,从八角珊瑚中发现用于萜烯生产的新生物合成途径具有很大的潜力。下一章概述了八珊瑚DNA和RNA提取的实际实验程序,基因组和转录组组装和挖掘,TC克隆和基因表达,蛋白质纯化,和体外分析。
    Octocorals are the most prolific source of terpenoids in the marine environment, with more than 4000 different compounds known from the phylum to date. However, the biochemical and genetic origin of their production remained elusive until recent studies showed that octocorals encode genes responsible for the biosynthesis of terpenoids in their own chromosomal DNA rather than from microbial symbionts as originally proposed. The identified coral genes include those encoding a new group of class I terpene cyclases (TCs) clustered among other candidate classes of tailoring enzymes. Phylogenetic analyses established octocoral TCs as a monophyletic clade, distinct from TCs of plants, bacteria, and other organisms. The newly discovered group of TCs appears to be ubiquitous in octocorals and is evolutionarily ancient. Given the recent discovery of octocoral terpenoid biochemistry and only limited genomic data presently available, there is substantial potential for discovering new biosynthetic pathways from octocorals for terpene production. The following chapter outlines practical experimental procedures for octocoral DNA and RNA extraction, genome and transcriptome assembly and mining, TC cloning and gene expression, protein purification, and in vitro analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    萜烯是最大的天然产品家族之一,具有可再生平台化学品和药物的强大应用。低活动,萜烯生物合成机器显示的选择性和稳定性可能构成在遵守绿色化学12条原则的过程中实现萜类化合物的便捷生物合成的障碍。因此,萜烯合酶的工程是工业生物技术应用的先决条件,但是由于它们的复杂催化作用而受阻,这些催化作用依赖于容易发生分叉机制的活性碳阳离子中间体。萜烯合酶的合理重新设计可能是繁琐的,需要高分辨率的结构信息,这并不总是可用的。此外,已证明难以将萜烯合酶的序列空间与特定产物谱联系起来。在这里,作者展示了祖先序列重建(ASR)如何在不需要结构的情况下,可以有利地用作重新设计萜烯合酶的蛋白质工程工具,没有过度的筛查。介绍了ASR的详细工作流程以及相关限制,重点是将这种方法应用于萜烯合酶。从I类和II类酶的选定实例中,作者主张,祖先萜烯环化酶是有价值的资产,可以揭示萜烯合酶的催化和促进生物合成。
    Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物是萜类化合物的多产生产者。萜类生物合成由萜烯合酶(TPS)引发。在植物中,识别了两种类型的萜烯合酶基因:典型的植物TPS基因和微生物萜烯合酶样基因(MTPSL)。虽然TPS基因在陆地植物中无处不在,MTPSL基因似乎仅限于非种子陆地植物。进化上,TPS基因是陆地植物特有的,而MTPSL基因在其他生物体中具有相关的对应物,尤其是真菌和细菌。植物中存在TPS型微生物,真菌和细菌,后两者通常与植物有关,在准确识别植物中真正的MTPSL基因方面提出了挑战。在这一章中,我们提出的生物信息学程序旨在鉴定MTPSL基因在测序的植物基因组和/或转录组。此外,我们概述了确认已鉴定的微生物型TPS基因为真正植物基因的验证方法。本章所述的方法也可用于分析除植物以外的生物体中的微生物类型TPS。
    Plants are prolific producers of terpenoids. Terpenoid biosynthesis is initiated by terpene synthases (TPS). In plants, two types of terpenes synthase genes are recognized: typical plant TPS genes and microbial-terpene synthase like-genes (MTPSL). While TPS genes are ubiquitous in land plants, MTPSL genes appear to be restricted to non-seed land plants. Evolutionarily, TPS genes are specific to land plants, whereas MTPSL genes have related counterparts in other organisms, especially fungi and bacteria. The presence of microbial type TPS in plants, fungi and bacteria, with the latter two often being associated with plants, poses a challenge in accurately identifying bona fide MTPSL genes in plants. In this chapter, we present bioinformatic procedures designed to identify MTPSL genes in sequenced plant genomes and/or transcriptomes. Additionally, we outline validation methods for confirming the identified microbial-type TPS genes as genuine plant genes. The method described in this chapter can also be adopted to analyze microbial type TPS in organisms other than plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号