Agouti-Related Protein

刺鼠相关蛋白
  • 文章类型: Journal Article
    喂养行为的有效控制需要复杂的动机和情感神经回路的协调调整。来自能量感应下丘脑神经元的神经肽是有效的摄食调节剂,但这些内源性信号如何塑造相关电路仍不清楚。这里,我们研究了生性神经肽Y(NPY)如何将GABA能输入适应终末纹(BNST)的床核。我们发现禁食会增加表达“饥饿”相关肽(AgRP)和BNST神经元之间的突触连接,促进进食的电路。相比之下,来自中央杏仁核(CeA)的GABA能输入,延长杏仁核回路,减少进食,减少了。激活NPY表达的AgRP神经元唤起这些突触适应,在缺乏NPY的小鼠中不存在。此外,禁食会降低BNST中CeA投影抑制食物摄入的能力,和缺乏NPY的小鼠不能减少焦虑以促进喂养。因此,AgRP神经元驱动输入特异性突触可塑性,在饥饿期间通过NPY实现饥饿和焦虑信号的选择性转变。
    Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing \'hunger\' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:高蛋白饮食通常富含已知可增强蛋白质合成并提供许多生理益处的支链氨基酸(BCAAs),但是最近的研究揭示了它们与肥胖和糖尿病的关系。为了支持这一点,蛋白质或BCAA补充被证明破坏葡萄糖代谢,而限制改善它。然而,目前尚不清楚这些是否是主要的,BCAAs的直接作用或在饮食BCAAs的慢性操作期间继发于其他生理变化。
    方法:三个月大的C57Bl/6小鼠用赋形剂/BCAA或BT2(一种降低BCAA的化合物)进行急性治疗,和详细的体内代谢表型,包括频繁取样和胰管钳,进行了。
    结果:在小鼠中使用导管引导的频繁采样方法,本研究表明,单次输注BCAAs足以使血糖和血浆胰岛素急剧升高.虽然用BCAAs预处理不影响葡萄糖耐量,高胰岛素-正常血糖钳夹期间持续输注BCAA会损害全身胰岛素敏感性。同样,单次注射BT2足以防止禁食期间BCAA升高,并显着改善高脂喂养小鼠的葡萄糖耐量,提示肥胖患者血糖控制异常可能与高循环BCAAs有因果关系。我们进一步表明,下丘脑中AgRP神经元的化学遗传学过度激活,如目前的肥胖症,显著损害通过急性BCAA降低完全正常化的葡萄糖耐量。有趣的是,这些影响大多只在男性身上表现出来,但不是在雌性老鼠身上。
    结论:这些发现表明,BCAA本身可以严重损害葡萄糖稳态和胰岛素敏感性,从而解释了它们如何在肥胖和糖尿病中长期破坏葡萄糖代谢。我们的发现还表明,AgRP神经元对血糖的调节是通过BCAAs介导的,进一步阐明了大脑控制葡萄糖稳态的新机制。
    BACKGROUND: High-protein diets are often enriched with branched-chain amino acids (BCAAs) known to enhance protein synthesis and provide numerous physiological benefits, but recent studies reveal their association with obesity and diabetes. In support of this, protein or BCAA supplementation is shown to disrupt glucose metabolism while restriction improves it. However, it is not clear if these are primary, direct effects of BCAAs or secondary to other physiological changes during chronic manipulation of dietary BCAAs.
    METHODS: Three-month-old C57Bl/6 mice were acutely treated with either vehicle/BCAAs or BT2, a BCAA-lowering compound, and detailed in vivo metabolic phenotyping, including frequent sampling and pancreatic clamps, were conducted.
    RESULTS: Using a catheter-guided frequent sampling method in mice, here we show that a single infusion of BCAAs was sufficient to acutely elevate blood glucose and plasma insulin. While pre-treatment with BCAAs did not affect glucose tolerance, a constant infusion of BCAAs during hyperinsulinemic-euglycemic clamps impaired whole-body insulin sensitivity. Similarly, a single injection of BT2 was sufficient to prevent BCAA rise during fasting and markedly improve glucose tolerance in high-fat-fed mice, suggesting that abnormal glycemic control in obesity may be causally linked to high circulating BCAAs. We further show that chemogenetic over-activation of AgRP neurons in the hypothalamus, as present in obesity, significantly impairs glucose tolerance that is completely normalized by acute BCAA reduction. Interestingly, most of these effects were demonstrated only in male, but not in female mice.
    CONCLUSIONS: These findings suggest that BCAAs per se can acutely impair glucose homeostasis and insulin sensitivity, thus offering an explanation for how they may disrupt glucose metabolism in the long-term as observed in obesity and diabetes. Our findings also reveal that AgRP neuronal regulation of blood glucose is mediated through BCAAs, further elucidating a novel mechanism by which brain controls glucose homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    下丘脑弓状核(ARC)中的AgRP神经元协调与食物供应和瘦素信号传导波动相关的食欲稳态变化。识别这些神经元中的相关转录调节途径一直是一个优先事项,然而,由于ARC的低丰度和丰富的细胞多样性,这种尝试受到了阻碍。在这里,我们在三种不同的饱腹感饥饿状态下,从雄性小鼠中产生了AgRP神经元特异性转录组和染色质可及性谱,禁食引起的饥饿,和瘦素诱导的饥饿抑制。对这些整合数据集的顺式调控分析能够鉴定出AgRP神经元中18个推定的饥饿促进和29个推定的饥饿抑制转录调节因子,其中16个被预测为瘦素的转录效应子。在我们的数据集中,干扰素调节因子3(IRF3)是瘦素诱导的饥饿抑制的主要候选介质。体外和体内IRF3激活的测量显示,瘦素给药后IRF3核占有率增加。最后,体内功能的增益和丧失实验证实了IRF3在介导瘦素在AgRP神经元中的急性饱腹感诱发作用中的作用。因此,我们的研究发现IRF3是AgRP神经元中瘦素急性饥饿抑制作用的关键介质.
    AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生长激素促分泌素受体(GHSR),主要被称为饥饿激素ghrelin的受体,有效地控制食物摄入,然而,介导该受体促食欲作用的特异性Ghsr表达细胞仍未完全表征。由于Ghsr在产生γ-氨基丁酸的神经元(GABA神经元)中表达,我们试图研究Ghsr在GABA神经元亚群中的选择性表达是否足以介导GHSR对摄食的影响。首先,我们将表达谷氨酸脱羧酶2(Gad2)酶(Gad2-CreER小鼠)的GABA神经元亚群中表达他莫昔芬依赖性Cre重组酶的小鼠与报告小鼠交叉,并发现ghrelin主要靶向位于下丘脑弓状核(ARH)中的Gad2表达神经元的子集,并且主要与Agouti相关蛋白(AgRP)表达神经元分离。对各种单细胞RNA测序数据集的分析进一步证实,小鼠大脑中共表达Gad2和Ghsr的细胞的主要亚群是非AgRPARH神经元。接下来,我们将Gad2-CreER小鼠与可再激活的GHSR缺陷小鼠交叉,以产生仅在表达Gad2的神经元中表达Ghsr的小鼠(Gad2-GHSR小鼠).我们发现ghrelin处理诱导转录激活标记c-Fos在Gad2-GHSR小鼠ARH中的表达,但未能诱导食物摄入。相比之下,在Gad2-GHSR小鼠中,食物剥夺诱导的再摄食高于GHSR缺陷小鼠,与野生型小鼠相似,这表明GHSR在GABA神经元亚群中不依赖ghrelin的作用足以引起小鼠完全代偿性吞噬。
    The growth hormone secretagogue receptor (GHSR), primarily known as the receptor for the hunger hormone ghrelin, potently controls food intake, yet the specific Ghsr-expressing cells mediating the orexigenic effects of this receptor remain incompletely characterized. Since Ghsr is expressed in gamma-aminobutyric acid (GABA)-producing neurons, we sought to investigate whether the selective expression of Ghsr in a subset of GABA neurons is sufficient to mediate GHSR\'s effects on feeding. First, we crossed mice that express a tamoxifen-dependent Cre recombinase in the subset of GABA neurons that express glutamic acid decarboxylase 2 (Gad2) enzyme (Gad2-CreER mice) with reporter mice, and found that ghrelin mainly targets a subset of Gad2-expressing neurons located in the hypothalamic arcuate nucleus (ARH) and that is predominantly segregated from Agouti-related protein (AgRP)-expressing neurons. Analysis of various single-cell RNA-sequencing datasets further corroborated that the primary subset of cells coexpressing Gad2 and Ghsr in the mouse brain are non-AgRP ARH neurons. Next, we crossed Gad2-CreER mice with reactivable GHSR-deficient mice to generate mice expressing Ghsr only in Gad2-expressing neurons (Gad2-GHSR mice). We found that ghrelin treatment induced the expression of the marker of transcriptional activation c-Fos in the ARH of Gad2-GHSR mice, yet failed to induce food intake. In contrast, food deprivation-induced refeeding was higher in Gad2-GHSR mice than in GHSR-deficient mice and similar to wild-type mice, suggesting that ghrelin-independent roles of GHSR in a subset of GABA neurons is sufficient for eliciting full compensatory hyperphagia in mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Seipin是脂质代谢的关键调节剂,其缺乏导致严重的脂肪营养不良。下丘脑是大脑调节食欲和能量稳态的关键中心,Seipin被大量表达。Seipin缺乏是否以及如何通过下丘脑参与的能量代谢失调导致全身代谢紊乱仍有待阐明。在本研究中,我们证明了Seipin缺乏引起下丘脑炎症,减少厌食性前阿片黑皮质素(POMC),和促食欲激动剂相关肽(AgRP)的升高。重要的是,罗格列酮的给药,噻唑烷二酮抗糖尿病药,拯救POMC和AgRP表达,抑制下丘脑炎症,并恢复Seipin基因敲除小鼠的能量稳态。我们的发现为Seipin缺乏相关能量失衡的机制提供了重要的见解,并表明罗格列酮可以作为与Seipin相关的代谢紊乱的潜在干预剂。
    Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肥胖与调节代谢的下丘脑神经元功能障碍有关,包括agouti相关蛋白(AgRP)表达神经元。在最近的一篇文章中,张等人。证明了饮食或遗传诱导的肥胖促进了AgRP神经元中特定的铁积累。在雄性小鼠中预防AgRP神经元中的铁过载减轻了饮食诱导的肥胖和相关的合并症。
    Obesity is associated with dysfunctions in hypothalamic neurons that regulate metabolism, including agouti-related protein (AgRP)-expressing neurons. In a recent article, Zhang et al. demonstrated that either diet- or genetically induced obesity promoted iron accumulation specifically in AgRP neurons. Preventing iron overload in AgRP neurons mitigated diet-induced obesity and related comorbidities in male mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    饥饿增加了卡路里消耗的动机,通常以低品位的吸引力为代价。然而,将热量感知与增加的热量消耗动机整合在一起的神经机制仍然未知.下丘脑弓状核中的Agouti相关肽(AgRP)神经元感觉饥饿,和热量溶液的摄入促进多巴胺释放在没有甜味的感觉。因此,我们假设AgRP神经元对饥饿的代谢感知对于促进伏隔核中多巴胺的释放是必不可少的,但不是无热量的解决方案。此外,我们研究了在能量需要条件下,AgRP神经元的代谢感应是否会影响苦味溶液的味道偏好。在这里,我们表明,受损的代谢感应在AgRP神经元减弱伏隔核多巴胺释放响应蔗糖,但不是糖精,消费。此外,与糖精相比,AgRP神经元中的代谢感应对于区分伏隔核多巴胺对蔗糖消耗的反应至关重要。在饥饿的条件下,AgRP神经元的代谢感知增加了对富含苦味剂的蔗糖溶液的偏好,奎宁,为了确保卡路里消耗,尽管持续饥饿,但AgRP神经元代谢感知受损的小鼠对蔗糖/奎宁溶液仍有强烈的厌恶。总之,我们证明了AgRP神经元中的正常代谢感知驱动了对卡路里消耗的偏好,主要是在需要的时候,通过参与伏隔核中的多巴胺释放。
    Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:SH3和多个锚蛋白重复结构域蛋白3(SHANK3)单基因突变或缺乏导致过度的刻板行为和社交能力受损,这经常发生在自闭症病例中。迄今为止,Shank3突变或缺失导致自闭症的潜在机制以及Shank3突变导致自闭症表型的大脑部分研究不足.下丘脑与刻板的行为和社交能力有关。p38α,大脑炎症反应的介质,被认为是某些自闭症发生的潜在基因。然而,目前尚不清楚下丘脑和p38α是否参与由Shank3突变或缺陷引起的自闭症的发展。
    方法:使用京都基因和基因组百科全书(KEGG)途径分析和免疫印迹来评估Shank3敲除(Shank3-/-)小鼠下丘脑中的交替信号通路。进行Home-Cage实时监测测试以记录刻板行为,并使用三室测试来监测小鼠的社交能力。使用腺相关病毒9(AAV9)在弓状核(ARC)或刺鼠相关肽(AgRP)神经元中表达p38α。D176A和F327S突变表达组成型活性p38α。T180A和Y182F突变表达无活性的p38α。
    结果:我们发现Shank3通过调节AgRP神经元中的p38α活性来控制刻板行为和社交能力。Shank3-/-小鼠下丘脑中磷酸化p38水平显著增强。始终如一,ARC或AgRP神经元中p38α的过表达在野生型(WT)小鼠中引起过度的刻板行为并损害社交能力。值得注意的是,AgRP神经元中激活的p38α会增加刻板行为并损害社交能力。相反,AgRP神经元中的失活p38α可显着改善Shank3-/-小鼠的自闭症行为。相比之下,ppopiomelanocortin(POMC)神经元中激活的p38α不会影响小鼠的刻板行为和社交能力。
    结论:我们证明了SHANK3调节下丘脑磷酸化p38水平和AgRP神经元失活p38α,显着改善了Shank3-/-小鼠的自闭症行为。然而,我们没有阐明SHANK3抑制AgRP神经元p38α的生化机制。
    结论:这些结果表明,Shank3缺乏通过激活AgRP神经元中的p38α信号而导致自闭症样行为,表明AgRP神经元中的p38α信号是Shank3突变相关自闭症的潜在治疗靶点。
    BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency.
    METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α.
    RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice.
    CONCLUSIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons.
    CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肥胖,一个世界性的流行病,导致各种代谢紊乱威胁着人类的健康。为了应对压力或禁食,糖皮质激素(GC)水平升高以促进食物摄入。这涉及GC通过GC受体(GR)在下丘脑弓状核(ARC)的刺鼠相关蛋白(AgRP)神经元中诱导的食欲性神经肽的表达。这里,我们报道了一种选择性GR调节剂(SGRM),它抑制GR诱导的非经典糖皮质激素反应元件(GREs)基因转录,如Agrp-GRE,但不是经典的GRES,通过这种方式可以作为一种新型的抗肥胖药物。我们已经确定了一种新的SGRM,2-O-反式-对-香豆酰基二甲酸(Zj7),从酸枣植物中提取的三萜类化合物,在不影响经典GREs的情况下选择性抑制Agrp-GRE中的GR转录活性。Zj7在高脂饮食诱导的肥胖和遗传肥胖db/db小鼠模型中降低了ARC中食欲基因的表达,并在体重减轻方面发挥了显着的食欲效应。转录组分析表明,Zj7抑制了下丘脑中合成的GR配体地塞米松(Dex)诱导的一组食欲基因的表达,包括Agrp和Npy。一起来看,Zj7,作为选择性GR调制器,表现出有益的代谢活动,部分是通过抑制食欲基因中非经典GREs中的GR活性。这项研究表明,潜在的厌食分子可能允许GRE特异性抑制GR转录活性,这是治疗代谢紊乱的一种有前途的方法。
    Obesity, a worldwide epidemic, leads to various metabolic disorders threatening human health. In response to stress or fasting, glucocorticoid (GC) levels are elevated to promote food intake. This involves GC-induced expression of the orexigenic neuropeptides in agouti-related protein (AgRP) neurons of the hypothalamic arcuate nucleus (ARC) via the GC receptor (GR). Here, we report a selective GR modulator (SGRM) that suppresses GR-induced transcription of genes with non-classical glucocorticoid response elements (GREs) such as Agrp-GRE, but not with classical GREs, and via this way may serve as a novel anti-obesity agent. We have identified a novel SGRM, 2-O-trans-p-coumaroylalphitolic acid (Zj7), a triterpenoid extracted from the Ziziphus jujube plant, that selectively suppresses GR transcriptional activity in Agrp-GRE without affecting classical GREs. Zj7 reduces the expression of orexigenic genes in the ARC and exerts a significant anorexigenic effect with weight loss in both high fat diet-induced obese and genetically obese db/db mouse models. Transcriptome analysis showed that Zj7 represses the expression of a group of orexigenic genes including Agrp and Npy induced by the synthetic GR ligand dexamethasone (Dex) in the hypothalamus. Taken together, Zj7, as a selective GR modulator, showed beneficial metabolic activities, in part by suppressing GR activity in non-classical GREs in orexigenic genes. This study demonstrates that a potential anorexigenic molecule may allow GRE-specific inhibition of GR transcriptional activity, which is a promising approach for the treatment of metabolic disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经验证据表明,热暴露会减少食物摄入量。然而,在感觉和代谢模式之间形成关联界面的神经回路结构和信号机制仍然未知,尽管桥脑臂旁核中的初级感热神经元变得很好表征1。乳腺细胞是沿着第三脑室2壁的一种特殊细胞类型,在脑实质和脑室系统3-8之间双向运输激素和信号分子。在这里,我们表明,tanycytes在急性热攻击时被激活,并且对于减少食物摄入是必要的。病毒介导的基因操作和电路作图表明,臂旁核的热感应谷氨酸能神经元直接或通过二级下丘脑神经元支配tanycytes。Tanycyes中的热依赖性Fos表达表明了它们产生信号分子的能力,包括血管内皮生长因子A(VEGFA)。而不是将VEGFA排放到脑脊液中以获得全身效应,VEGFA沿着弓状核中的单丝细胞的实质过程释放。然后,VEGFA增加了表达Flt1的多巴胺和含agouti相关肽(Agrp)的神经元的峰值阈值,从而启动净厌食输出。的确,热中性时的急性热和谷氨酸能臂旁神经元的化学激活都会减少数小时的食物摄入量,对Vegfa功能丧失和囊泡相关膜蛋白2(VAMP2)依赖性胞吐作用的阻断都敏感。总的来说,我们定义了一个多模式神经回路,在该神经回路中,tanycyes将臂旁感觉中继与代谢密码的长期执行联系起来.
    Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain\'s parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号