Agouti-Related Protein

刺鼠相关蛋白
  • 文章类型: Journal Article
    喂养行为的有效控制需要复杂的动机和情感神经回路的协调调整。来自能量感应下丘脑神经元的神经肽是有效的摄食调节剂,但这些内源性信号如何塑造相关电路仍不清楚。这里,我们研究了生性神经肽Y(NPY)如何将GABA能输入适应终末纹(BNST)的床核。我们发现禁食会增加表达“饥饿”相关肽(AgRP)和BNST神经元之间的突触连接,促进进食的电路。相比之下,来自中央杏仁核(CeA)的GABA能输入,延长杏仁核回路,减少进食,减少了。激活NPY表达的AgRP神经元唤起这些突触适应,在缺乏NPY的小鼠中不存在。此外,禁食会降低BNST中CeA投影抑制食物摄入的能力,和缺乏NPY的小鼠不能减少焦虑以促进喂养。因此,AgRP神经元驱动输入特异性突触可塑性,在饥饿期间通过NPY实现饥饿和焦虑信号的选择性转变。
    Efficient control of feeding behavior requires the coordinated adjustment of complex motivational and affective neurocircuits. Neuropeptides from energy-sensing hypothalamic neurons are potent feeding modulators, but how these endogenous signals shape relevant circuits remains unclear. Here, we examine how the orexigenic neuropeptide Y (NPY) adapts GABAergic inputs to the bed nucleus of the stria terminalis (BNST). We find that fasting increases synaptic connectivity between agouti-related peptide (AgRP)-expressing \'hunger\' and BNST neurons, a circuit that promotes feeding. In contrast, GABAergic input from the central amygdala (CeA), an extended amygdala circuit that decreases feeding, is reduced. Activating NPY-expressing AgRP neurons evokes these synaptic adaptations, which are absent in NPY-deficient mice. Moreover, fasting diminishes the ability of CeA projections in the BNST to suppress food intake, and NPY-deficient mice fail to decrease anxiety in order to promote feeding. Thus, AgRP neurons drive input-specific synaptic plasticity, enabling a selective shift in hunger and anxiety signaling during starvation through NPY.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:高蛋白饮食通常富含已知可增强蛋白质合成并提供许多生理益处的支链氨基酸(BCAAs),但是最近的研究揭示了它们与肥胖和糖尿病的关系。为了支持这一点,蛋白质或BCAA补充被证明破坏葡萄糖代谢,而限制改善它。然而,目前尚不清楚这些是否是主要的,BCAAs的直接作用或在饮食BCAAs的慢性操作期间继发于其他生理变化。
    方法:三个月大的C57Bl/6小鼠用赋形剂/BCAA或BT2(一种降低BCAA的化合物)进行急性治疗,和详细的体内代谢表型,包括频繁取样和胰管钳,进行了。
    结果:在小鼠中使用导管引导的频繁采样方法,本研究表明,单次输注BCAAs足以使血糖和血浆胰岛素急剧升高.虽然用BCAAs预处理不影响葡萄糖耐量,高胰岛素-正常血糖钳夹期间持续输注BCAA会损害全身胰岛素敏感性。同样,单次注射BT2足以防止禁食期间BCAA升高,并显着改善高脂喂养小鼠的葡萄糖耐量,提示肥胖患者血糖控制异常可能与高循环BCAAs有因果关系。我们进一步表明,下丘脑中AgRP神经元的化学遗传学过度激活,如目前的肥胖症,显著损害通过急性BCAA降低完全正常化的葡萄糖耐量。有趣的是,这些影响大多只在男性身上表现出来,但不是在雌性老鼠身上。
    结论:这些发现表明,BCAA本身可以严重损害葡萄糖稳态和胰岛素敏感性,从而解释了它们如何在肥胖和糖尿病中长期破坏葡萄糖代谢。我们的发现还表明,AgRP神经元对血糖的调节是通过BCAAs介导的,进一步阐明了大脑控制葡萄糖稳态的新机制。
    BACKGROUND: High-protein diets are often enriched with branched-chain amino acids (BCAAs) known to enhance protein synthesis and provide numerous physiological benefits, but recent studies reveal their association with obesity and diabetes. In support of this, protein or BCAA supplementation is shown to disrupt glucose metabolism while restriction improves it. However, it is not clear if these are primary, direct effects of BCAAs or secondary to other physiological changes during chronic manipulation of dietary BCAAs.
    METHODS: Three-month-old C57Bl/6 mice were acutely treated with either vehicle/BCAAs or BT2, a BCAA-lowering compound, and detailed in vivo metabolic phenotyping, including frequent sampling and pancreatic clamps, were conducted.
    RESULTS: Using a catheter-guided frequent sampling method in mice, here we show that a single infusion of BCAAs was sufficient to acutely elevate blood glucose and plasma insulin. While pre-treatment with BCAAs did not affect glucose tolerance, a constant infusion of BCAAs during hyperinsulinemic-euglycemic clamps impaired whole-body insulin sensitivity. Similarly, a single injection of BT2 was sufficient to prevent BCAA rise during fasting and markedly improve glucose tolerance in high-fat-fed mice, suggesting that abnormal glycemic control in obesity may be causally linked to high circulating BCAAs. We further show that chemogenetic over-activation of AgRP neurons in the hypothalamus, as present in obesity, significantly impairs glucose tolerance that is completely normalized by acute BCAA reduction. Interestingly, most of these effects were demonstrated only in male, but not in female mice.
    CONCLUSIONS: These findings suggest that BCAAs per se can acutely impair glucose homeostasis and insulin sensitivity, thus offering an explanation for how they may disrupt glucose metabolism in the long-term as observed in obesity and diabetes. Our findings also reveal that AgRP neuronal regulation of blood glucose is mediated through BCAAs, further elucidating a novel mechanism by which brain controls glucose homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    下丘脑弓状核(ARC)中的AgRP神经元协调与食物供应和瘦素信号传导波动相关的食欲稳态变化。识别这些神经元中的相关转录调节途径一直是一个优先事项,然而,由于ARC的低丰度和丰富的细胞多样性,这种尝试受到了阻碍。在这里,我们在三种不同的饱腹感饥饿状态下,从雄性小鼠中产生了AgRP神经元特异性转录组和染色质可及性谱,禁食引起的饥饿,和瘦素诱导的饥饿抑制。对这些整合数据集的顺式调控分析能够鉴定出AgRP神经元中18个推定的饥饿促进和29个推定的饥饿抑制转录调节因子,其中16个被预测为瘦素的转录效应子。在我们的数据集中,干扰素调节因子3(IRF3)是瘦素诱导的饥饿抑制的主要候选介质。体外和体内IRF3激活的测量显示,瘦素给药后IRF3核占有率增加。最后,体内功能的增益和丧失实验证实了IRF3在介导瘦素在AgRP神经元中的急性饱腹感诱发作用中的作用。因此,我们的研究发现IRF3是AgRP神经元中瘦素急性饥饿抑制作用的关键介质.
    AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:SH3和多个锚蛋白重复结构域蛋白3(SHANK3)单基因突变或缺乏导致过度的刻板行为和社交能力受损,这经常发生在自闭症病例中。迄今为止,Shank3突变或缺失导致自闭症的潜在机制以及Shank3突变导致自闭症表型的大脑部分研究不足.下丘脑与刻板的行为和社交能力有关。p38α,大脑炎症反应的介质,被认为是某些自闭症发生的潜在基因。然而,目前尚不清楚下丘脑和p38α是否参与由Shank3突变或缺陷引起的自闭症的发展。
    方法:使用京都基因和基因组百科全书(KEGG)途径分析和免疫印迹来评估Shank3敲除(Shank3-/-)小鼠下丘脑中的交替信号通路。进行Home-Cage实时监测测试以记录刻板行为,并使用三室测试来监测小鼠的社交能力。使用腺相关病毒9(AAV9)在弓状核(ARC)或刺鼠相关肽(AgRP)神经元中表达p38α。D176A和F327S突变表达组成型活性p38α。T180A和Y182F突变表达无活性的p38α。
    结果:我们发现Shank3通过调节AgRP神经元中的p38α活性来控制刻板行为和社交能力。Shank3-/-小鼠下丘脑中磷酸化p38水平显著增强。始终如一,ARC或AgRP神经元中p38α的过表达在野生型(WT)小鼠中引起过度的刻板行为并损害社交能力。值得注意的是,AgRP神经元中激活的p38α会增加刻板行为并损害社交能力。相反,AgRP神经元中的失活p38α可显着改善Shank3-/-小鼠的自闭症行为。相比之下,ppopiomelanocortin(POMC)神经元中激活的p38α不会影响小鼠的刻板行为和社交能力。
    结论:我们证明了SHANK3调节下丘脑磷酸化p38水平和AgRP神经元失活p38α,显着改善了Shank3-/-小鼠的自闭症行为。然而,我们没有阐明SHANK3抑制AgRP神经元p38α的生化机制。
    结论:这些结果表明,Shank3缺乏通过激活AgRP神经元中的p38α信号而导致自闭症样行为,表明AgRP神经元中的p38α信号是Shank3突变相关自闭症的潜在治疗靶点。
    BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency.
    METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α.
    RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice.
    CONCLUSIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons.
    CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肥胖,一个世界性的流行病,导致各种代谢紊乱威胁着人类的健康。为了应对压力或禁食,糖皮质激素(GC)水平升高以促进食物摄入。这涉及GC通过GC受体(GR)在下丘脑弓状核(ARC)的刺鼠相关蛋白(AgRP)神经元中诱导的食欲性神经肽的表达。这里,我们报道了一种选择性GR调节剂(SGRM),它抑制GR诱导的非经典糖皮质激素反应元件(GREs)基因转录,如Agrp-GRE,但不是经典的GRES,通过这种方式可以作为一种新型的抗肥胖药物。我们已经确定了一种新的SGRM,2-O-反式-对-香豆酰基二甲酸(Zj7),从酸枣植物中提取的三萜类化合物,在不影响经典GREs的情况下选择性抑制Agrp-GRE中的GR转录活性。Zj7在高脂饮食诱导的肥胖和遗传肥胖db/db小鼠模型中降低了ARC中食欲基因的表达,并在体重减轻方面发挥了显着的食欲效应。转录组分析表明,Zj7抑制了下丘脑中合成的GR配体地塞米松(Dex)诱导的一组食欲基因的表达,包括Agrp和Npy。一起来看,Zj7,作为选择性GR调制器,表现出有益的代谢活动,部分是通过抑制食欲基因中非经典GREs中的GR活性。这项研究表明,潜在的厌食分子可能允许GRE特异性抑制GR转录活性,这是治疗代谢紊乱的一种有前途的方法。
    Obesity, a worldwide epidemic, leads to various metabolic disorders threatening human health. In response to stress or fasting, glucocorticoid (GC) levels are elevated to promote food intake. This involves GC-induced expression of the orexigenic neuropeptides in agouti-related protein (AgRP) neurons of the hypothalamic arcuate nucleus (ARC) via the GC receptor (GR). Here, we report a selective GR modulator (SGRM) that suppresses GR-induced transcription of genes with non-classical glucocorticoid response elements (GREs) such as Agrp-GRE, but not with classical GREs, and via this way may serve as a novel anti-obesity agent. We have identified a novel SGRM, 2-O-trans-p-coumaroylalphitolic acid (Zj7), a triterpenoid extracted from the Ziziphus jujube plant, that selectively suppresses GR transcriptional activity in Agrp-GRE without affecting classical GREs. Zj7 reduces the expression of orexigenic genes in the ARC and exerts a significant anorexigenic effect with weight loss in both high fat diet-induced obese and genetically obese db/db mouse models. Transcriptome analysis showed that Zj7 represses the expression of a group of orexigenic genes including Agrp and Npy induced by the synthetic GR ligand dexamethasone (Dex) in the hypothalamus. Taken together, Zj7, as a selective GR modulator, showed beneficial metabolic activities, in part by suppressing GR activity in non-classical GREs in orexigenic genes. This study demonstrates that a potential anorexigenic molecule may allow GRE-specific inhibition of GR transcriptional activity, which is a promising approach for the treatment of metabolic disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经验证据表明,热暴露会减少食物摄入量。然而,在感觉和代谢模式之间形成关联界面的神经回路结构和信号机制仍然未知,尽管桥脑臂旁核中的初级感热神经元变得很好表征1。乳腺细胞是沿着第三脑室2壁的一种特殊细胞类型,在脑实质和脑室系统3-8之间双向运输激素和信号分子。在这里,我们表明,tanycytes在急性热攻击时被激活,并且对于减少食物摄入是必要的。病毒介导的基因操作和电路作图表明,臂旁核的热感应谷氨酸能神经元直接或通过二级下丘脑神经元支配tanycytes。Tanycyes中的热依赖性Fos表达表明了它们产生信号分子的能力,包括血管内皮生长因子A(VEGFA)。而不是将VEGFA排放到脑脊液中以获得全身效应,VEGFA沿着弓状核中的单丝细胞的实质过程释放。然后,VEGFA增加了表达Flt1的多巴胺和含agouti相关肽(Agrp)的神经元的峰值阈值,从而启动净厌食输出。的确,热中性时的急性热和谷氨酸能臂旁神经元的化学激活都会减少数小时的食物摄入量,对Vegfa功能丧失和囊泡相关膜蛋白2(VAMP2)依赖性胞吐作用的阻断都敏感。总的来说,我们定义了一个多模式神经回路,在该神经回路中,tanycyes将臂旁感觉中继与代谢密码的长期执行联系起来.
    Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain\'s parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    AgRP神经元驱动饥饿,过多的营养摄入是肥胖和相关代谢紊乱的主要驱动因素。虽然已经建立了许多影响摄食行为中央调节的因素,microRNAs在这个过程中的作用知之甚少。利用独特的鼠标模型,我们证明miR-33在AgRP神经元的调节中起关键作用,miR-33的丢失导致进食增加,肥胖,和小鼠的代谢功能障碍。这些效应包括参与线粒体生物发生和脂肪酸代谢的多个miR-33靶基因的调节。我们的发现阐明了由非编码RNA调节的关键调节途径,该途径通过控制与AgRP神经元激活相关的多个生物能量过程来影响饥饿。提供替代治疗方法来调节摄食行为和相关的代谢疾病。
    AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Agouti相关肽(AgRP)表达和前黑皮素(POMC)表达神经元相互调节食物摄入。这里,我们结合非相互作用重组酶在AgRP和POMC神经元中同时表达功能上相反的化学遗传受体,以比较在雄性和雌性小鼠中同时激活AgRP和抑制POMC神经元与分离激活AgRP神经元或分离抑制POMC神经元的代谢反应。我们表明,食物摄入受AgRP神经元激活和POMC神经元抑制的累加效应调节,而全身胰岛素敏感性和糖异生是通过分离和同时调节AgRP和POMC神经元而不同地调节的。我们确定了在下丘脑室旁核中参与Npy1R表达神经元的神经回路,其中激活的AgRP神经元和抑制的POMC神经元协作以促进食物消耗并激活孤束核中的Th神经元。总的来说,这些结果揭示了AgRP和POMC神经回路之间的双向相互作用是如何精确调节食物摄入的。
    Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:中央黑皮质素系统对于调节食物摄入量和体重至关重要。刺鼠相关蛋白(AgRP)是中央黑皮质素系统的唯一食欲成分,在哺乳动物物种中保守。目前已知AgRP仅在中底下丘脑表达,和下丘脑表达AgRP的神经元是进食所必需的。在这里,我们表征了小鼠后脑中先前未知的AgRP细胞群。
    方法:使用基因表达分析研究了AgRP在后脑中的表达,单细胞RNA测序,免疫荧光分析和具有报告表达的多个转基因小鼠。AgRP神经元的激活是通过设计师受体(DREADD)和使用具有超高光敏性的阶跃功能视蛋白(SOUL)的经颅聚焦光刺激来实现的。
    结果:表达AgRP的细胞存在于小鼠后脑的孤立束(cNTS)的后区域(AP)和邻近的后下区域(SubP)和连合核中(本文称为AgRPHind)。AgRPHind细胞由局部突出的神经元以及tanycyte样细胞组成。食物剥夺刺激后脑Agrp表达以及AgRPHind细胞亚群的神经元活性。在缺乏下丘脑AgRP神经元的成年小鼠中,AgRP神经元的化学遗传激活导致吞食过多和体重增加。此外,经颅局灶性光刺激后脑AgRP细胞可增加有或没有下丘脑AgRP神经元的成年小鼠的食物摄入量。
    结论:我们的研究表明,后脑的中央黑皮质素系统具有致食欲成分,并且AgRPHind神经元独立于下丘脑AgRP神经元刺激进食。
    OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain.
    METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL).
    RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons.
    CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    快速的肠-脑交流对于维持能量平衡至关重要,并且在饮食引起的肥胖中受到破坏。特别是,碳水化合物过度消耗在体内感觉回路调节中的作用需要进一步研究。这里,我们报告说,生性高蔗糖饮食(HSD)选择性地减弱了胃内输送葡萄糖后促进饥饿的agouti相关蛋白(AgRP)神经元的沉默,而我们之前的研究表明,过度摄入高脂饮食(HFD)会选择性地减弱脂质诱导的神经沉默.相比之下,HSD和HFD都可逆地抑制了食物呈递后的AgRP神经元的快速抑制,并促进了更美味食物的摄入。我们的发现表明,过量的糖和脂肪以大量营养素依赖性和非依赖性方式在病理上调节进食回路的活动,因此可能会加重肥胖。
    Rapid gut-brain communication is critical to maintain energy balance and is disrupted in diet-induced obesity. In particular, the role of carbohydrate overconsumption in the regulation of interoceptive circuits in vivo requires further investigation. Here, we report that an obesogenic high-sucrose diet (HSD) selectively blunts silencing of hunger-promoting agouti-related protein (AgRP) neurons following intragastric delivery of glucose, whereas we previously showed that overconsumption of a high-fat diet (HFD) selectively attenuates lipid-induced neural silencing. By contrast, both HSD and HFD reversibly dampen rapid AgRP neuron inhibition following chow presentation and promote intake of more palatable foods. Our findings reveal that excess sugar and fat pathologically modulate feeding circuit activity in both macronutrient-dependent and -independent ways and thus may additively exacerbate obesity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号