Acinetobacter baumannii

鲍曼不动杆菌
  • 文章类型: Journal Article
    The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three Acinetobacter baumannii-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Staphylococcus aureus (Sa) and Acinetobacter baumannii (Ab) are frequently co-isolated from polymicrobial infections that are severe and refractory to therapy. Here, we apply a combination of wet-lab experiments and in silico modeling to unveil the intricate nature of the Ab/Sa interaction using both, representative laboratory strains and strains co-isolated from clinical samples. This comprehensive methodology allowed uncovering Sa\'s capability to exert a partial interference on Ab by the expression of phenol-soluble modulins. In addition, we observed a cross-feeding mechanism by which Sa supports the growth of Ab by providing acetoin as an alternative carbon source. This study is the first to dissect the Ab/Sa interaction dynamics wherein competitive and cooperative strategies can intertwine. Through our findings, we illuminate the ecological mechanisms supporting their coexistence in the context of polymicrobial infections. Our research not only enriches our understanding but also opens doors to potential therapeutic avenues in managing these challenging infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Acinetobacter baumannii is a gram-negative bacterium well known for its multidrug resistance and connection to nosocomial infections under ESKAPE pathogens. This opportunistic pathogen is ubiquitously associated with nosocomial infections, posing significant threats within healthcare environments. Its critical clinical symptoms, namely, meningitis, urinary tract infections, bloodstream infections, ventilator-associated pneumonia, and pneumonia, catalyze the imperative demand for innovative therapeutic interventions. The proposed research focuses on delineating the role of Zinc, a crucial metallo-binding protein and micronutrient integral to bacterial metabolism and virulence, to enhance understanding of the pathogenicity of A. baumannii. RNA sequencing and subsequent DESeq2 analytical methods were used to identify differential gene expressions influenced by zinc exposure. Exploiting the STRING database for functional enrichment analysis has demonstrated the complex molecular mechanisms underlying the enhancement of pathogenicity prompted by Zinc. Moreover, hub genes like gltB, ribD, AIL77834.1, sdhB, nuoI, acsA_1, acoC, accA, accD were predicted using the cytohubba tool in Cytoscape. This investigation underscores the pivotal role of Zinc in the virulence of A. baumannii elucidates the underlying molecular pathways responsible for its pathogenicity. The research further accentuates the need for innovative therapeutic strategies to combat A. baumannii infections, particularly those induced by multidrug-resistant strains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2K4L是短α-螺旋肽temporin-1CEc的合理设计的类似物,一种通过取代氨基酸残基从中国褐蛙林蛙的皮肤分泌物中分离和纯化的天然肽。2K4L在体外显示出比temporin-1CEc提高的广谱抗菌活性。这里,2K4L在巨噬细胞中的抗菌和抗炎活性,研究了秀丽隐杆线虫和小鼠。结果表明,2K4L可以进入THP-1细胞杀死多药耐药鲍曼不动杆菌(MRAB0227)和敏感鲍曼不动杆菌(AB22933),以及通过抑制NF-κB信号通路减少MRAB0227诱导的促炎反应。同样,2K4L对鲍曼不动杆菌吸收秀丽隐杆线虫表现出很强的杀菌活性,延长线虫的寿命和健康。同时,2K4L通过抑制p38MAPK/PMK-1信号通路中核心基因的表达和下调p38的磷酸化水平来缓解氧化应激反应,从而保护线虫免受鲍曼不动杆菌的损伤。最后,在LPS诱导的脓毒症模型中,2K4L通过抑制MAPK和NF-κB信号通路的信号蛋白表达并保护LPS诱导的脓毒症小鼠免受致死性炎症反应,从而增强脓毒症小鼠的存活并减少促炎细胞因子的产生。总之,2K4L在体外和体内都改善了LPS诱导的炎症。
    2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    AIDA随机临床试验发现,粘菌素单药治疗和粘菌素-美罗培南联合治疗在耐碳青霉烯类革兰氏阴性感染中的临床失败或生存率没有显着差异。这项反向转化研究的目的是将来自AIDA试验的所有个体临床前和临床药代动力学-药效学(PKPD)数据整合到药物计量学框架中,以探索细菌负荷的个性化预测是否与试验结果相关。包括207例患者中的每一个的汇编数据集是(i)关于感染鲍曼不动杆菌分离物的信息(最小抑制浓度,棋盘分析数据,和小鼠模型中的适应性),(ii)粘菌素血浆浓度和粘菌素和美罗培南给药历史,和(iii)疾病评分和人口统计学。个人信息被整合到PKPD模型中,以及每位患者24小时细菌计数的预测变化,以及患者特征,使用logistic回归与临床结局相关。体内适应性是细菌数量变化的最重要因素。模型预测的24小时生长≥2-log10(164/207)与临床失败呈正相关(调整后的比值比,OR=2.01)。SOFA评分的其他重要预测因子增加一个单位的aOR为1.24,1.19Charlson合并症指数,和1.01年龄。这项研究说明了如何通过药效学模型整合临床前和临床抗感染PKPD数据,并确定与临床结果相关的患者和病原体特异性因素-这种方法可以提高对研究结果的理解。
    The AIDA randomized clinical trial found no significant difference in clinical failure or survival between colistin monotherapy and colistin-meropenem combination therapy in carbapenem-resistant Gram-negative infections. The aim of this reverse translational study was to integrate all individual preclinical and clinical pharmacokinetic-pharmacodynamic (PKPD) data from the AIDA trial in a pharmacometric framework to explore whether individualized predictions of bacterial burden were associated with the trial outcomes. The compiled dataset included for each of the 207 patients was (i) information on the infecting Acinetobacter baumannii isolate (minimum inhibitory concentration, checkerboard assay data, and fitness in a murine model), (ii) colistin plasma concentrations and colistin and meropenem dosing history, and (iii) disease scores and demographics. The individual information was integrated into PKPD models, and the predicted change in bacterial count at 24 h for each patient, as well as patient characteristics, was correlated with clinical outcomes using logistic regression. The in vivo fitness was the most important factor for change in bacterial count. A model-predicted growth at 24 h of ≥2-log10 (164/207) correlated positively with clinical failure (adjusted odds ratio, aOR = 2.01). The aOR for one unit increase of other significant predictors were 1.24 for SOFA score, 1.19 for Charlson comorbidity index, and 1.01 for age. This study exemplifies how preclinical and clinical anti-infective PKPD data can be integrated through pharmacodynamic modeling and identify patient- and pathogen-specific factors related to clinical outcomes - an approach that may improve understanding of study outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鲍曼不动杆菌是与医院获得性肺炎相关的常见病原体,目前对碳青霉烯类和粘菌素抗生素的耐药性增加。鲍曼不动杆菌感染由于其逃避当前抗菌治疗的能力而导致高病死率。强调开发可行的治疗鲍曼不动杆菌相关性肺炎的紧迫性。在这次审查中,我们探讨了当前和新的治疗方案,以克服鲍曼不动杆菌相关肺炎治疗失败.其中,抗生素联合疗法同时或交替施用几种药物,是优化治疗成功的一种有希望的方法。然而,在不同的研究中,它与不一致和不确定的治疗结局相关.因此,进行额外的临床试验以确定不同抗生素组合的临床有效性至关重要。我们还讨论了新型抗菌疗法的前瞻性作用,包括抗菌肽,基于噬菌体的治疗,重新利用的药物,天然存在的化合物,基于纳米粒子的治疗,抗毒力策略,免疫疗法,光动力和声动力疗法,利用它们作为额外的替代疗法,同时解决鲍曼不动杆菌相关肺炎。重要的是,这些创新疗法还需要药代动力学和药效学评估的安全性,稳定性,免疫原性,毒性,在临床上被批准作为鲍曼不动杆菌相关肺部感染的替代抢救疗法之前,它们具有耐受性。
    Acinetobacter baumannii is a common pathogen associated with hospital-acquired pneumonia showing increased resistance to carbapenem and colistin antibiotics nowadays. Infections with A. baumannii cause high patient fatalities due to their capability to evade current antimicrobial therapies, emphasizing the urgency of developing viable therapeutics to treat A. baumannii-associated pneumonia. In this review, we explore current and novel therapeutic options for overcoming therapeutic failure when dealing with A. baumannii-associated pneumonia. Among them, antibiotic combination therapy administering several drugs simultaneously or alternately, is one promising approach for optimizing therapeutic success. However, it has been associated with inconsistent and inconclusive therapeutic outcomes across different studies. Therefore, it is critical to undertake additional clinical trials to ascertain the clinical effectiveness of different antibiotic combinations. We also discuss the prospective roles of novel antimicrobial therapies including antimicrobial peptides, bacteriophage-based therapy, repurposed drugs, naturally-occurring compounds, nanoparticle-based therapy, anti-virulence strategies, immunotherapy, photodynamic and sonodynamic therapy, for utilizing them as additional alternative therapy while tackling A. baumannii-associated pneumonia. Importantly, these innovative therapies further require pharmacokinetic and pharmacodynamic evaluation for safety, stability, immunogenicity, toxicity, and tolerability before they can be clinically approved as an alternative rescue therapy for A. baumannii-associated pulmonary infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MltG,位于细菌的内膜内,作为通过切割新合成的聚糖链整合到细胞壁中所必需的裂解转糖基转移酶(LT),强调其在细菌细胞壁生物合成和重塑中的关键参与。目前的研究报道了LT的MltG家族的第一个结构。我们已经阐明了鲍曼不动杆菌(abMltG)的MltG的结构,一种强大的超级细菌,以其显著的抗生素抗性而闻名。我们的结构和生化研究揭示了MltG家族中存在柔性肽聚糖(PG)结合域(PGD),以单体形式存在于溶液中。此外,我们通过结构分析和序列比较相结合的方法描绘了abMltG的推定活性位点.这一发现增强了我们对MltG家族介导的转糖基化过程的理解,提供见解,可以为开发针对鲍曼不动杆菌的新型抗生素提供信息。
    MltG, positioned within the inner membrane of bacteria, functions as a lytic transglycosylase (LT) essential for integrating into the cell wall by cleaving the newly synthesized glycan strand, emphasizing its critical involvement in bacterial cell wall biosynthesis and remodeling. Current study reported the first structure of MltG family of LT. We have elucidated the structure of MltG from Acinetobacter baumannii (abMltG), a formidable superbug renowned for its remarkable antibiotic resistance. Our structural and biochemical investigations unveiled the presence of a flexible peptidoglycan (PG)-binding domain (PGD) within MltG family, which exists as a monomer in solution. Furthermore, we delineated the putative active site of abMltG via a combination of structural analysis and sequence comparison. This discovery enhances our comprehension of the transglycosylation process mediated by the MltG family, offering insights that could inform the development of novel antibiotics tailored to combat A. baumannii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鲍曼不动杆菌(AB)已成为易感和重症患者的主要病原体。尚不清楚由于AB菌血症引起的早期死亡率(EM)是由于感染患者的临床特征较差还是病原体的毒力所致。在这项研究中,我们旨在研究AB毒力对菌血症引起的EM的影响。这项回顾性研究包括138例AB菌血症患者(年龄≥18岁),他们在2015年至2019年期间入住韩国三级护理教学医院。EM定义为菌血症发作后7天内发生的死亡。将从患者血液培养物中获得的AB临床分离株分别注射到15只Galleriamelonella幼虫中,将其孵育5天。根据死亡幼虫的数量,将临床分离株分为高毒力和低毒力组。合并患者的临床数据,并进行多变量Cox回归分析,以确定EM的危险因素。总的来说,48/138(34.8%)患者在菌血症发作后7天内死亡。Pitt菌血症评分是唯一与EM相关的危险因素。总之,AB毒力对AB菌血症患者EM无独立影响。
    Acinetobacter baumannii (AB) has emerged as a major pathogen in vulnerable and severely ill patients. It remains unclear whether early mortality (EM) due to AB bacteremia is because of worse clinical characteristics of the infected patients or the virulence of the pathogen. In this study, we aimed to investigate the effect of AB virulence on EM due to bacteremia. This retrospective study included 138 patients with AB bacteremia (age: ≥ 18 years) who were admitted to a tertiary care teaching hospital in South Korea between 2015 and 2019. EM was defined as death occurring within 7 days of bacteremia onset. The AB clinical isolates obtained from the patients\' blood cultures were injected into 15 Galleria mellonella larvae each, which were incubated for 5 days. Clinical isolates were classified into high- and low-virulence groups based on the number of dead larvae. Patients\' clinical data were combined and subjected to multivariate Cox regression analyses to identify the risk factors for EM. In total, 48/138 (34.8%) patients died within 7 days of bacteremia onset. The Pitt bacteremia score was the only risk factor associated with EM. In conclusion, AB virulence had no independent effect on EM in patients with AB bacteremia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由多重耐药细菌(MDR)引起的严重感染数量的增加正在挑战我们的社会。尽管努力发现新的治疗选择,很少有针对MDR的抗生素获得食品和药物管理局(FDA)的批准。由于其在体外证明了对抗MDR病原体的能力,乳酸菌已成为有希望的治疗替代品。我们先前的共培养研究表明,鼠李糖乳杆菌CRL2244对耐碳青霉烯类鲍曼不动杆菌(CRAB)菌株具有有效的杀伤作用。在这里,我们报告了从Lcb获得的无细胞条件培养基(CFCM)样品。鼠李糖CRL2244培养物在不同时间孵育显示抗43种不同病原体的抗菌活性,包括CRAB,耐甲氧西林金黄色葡萄球菌(MRSA)和碳青霉烯酶肺炎克雷伯菌(KPC)阳性菌株。此外,transwell和超滤分析以及物理和化学/生化测试表明,Lcb。鼠李糖CRL2244分泌<3kDa的代谢产物,其抗菌活性不会因pH的轻度变化而受到明显损害,温度和各种酶处理。此外,敏感性和时间杀灭试验表明,Lcb的杀菌活性。鼠李糖CRL2244代谢物增强一些当前FDA批准的抗生素的活性。我们假设这一观察可能是由于Lcb的影响。鼠李糖CRL2244代谢物对细胞形态和编码苯乙酸(PAA)和组氨酸分解代谢Hut途径的基因的转录表达增强,金属采集和生物膜形成,所有这些都与细菌毒力有关。有趣的是,Lcb的细胞外存在。鼠李糖CRL2244诱导编码CidA/LgrA蛋白的基因转录,这与一些细菌的程序性细胞死亡有关。总的来说,本报告中的发现强调了Lcb释放的化合物的有希望的潜力。鼠李糖CRL2244作为替代和/或补充选择来治疗由鲍曼不动杆菌以及其他MDR细菌病原体引起的感染。
    A growing increase in the number of serious infections caused by multidrug resistant bacteria (MDR) is challenging our society. Despite efforts to discover novel therapeutic options, few antibiotics targeting MDR have been approved by the Food and Drug Administration (FDA). Lactic acid bacteria have emerged as a promising therapeutic alternative due to their demonstrated ability to combat MDR pathogens in vitro. Our previous co-culture studies showed Lacticaseibacillus rhamnosus CRL 2244 as having a potent killing effect against carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Here we report that cell-free conditioned media (CFCM) samples obtained from Lcb. rhamnosus CRL 2244 cultures incubated at different times display antimicrobial activity against 43 different pathogens, including CRAB, methicillin-resistant Staphylococcus aureus (MRSA) and carbapenemase Klebsiella pneumoniae (KPC)-positive strains. Furthermore, transwell and ultrafiltration analyses together with physical and chemical/biochemical tests showed that Lcb. rhamnosus CRL 2244 secretes a <3 kDa metabolite(s) whose antimicrobial activity is not significantly impaired by mild changes in pH, temperature and various enzymatic treatments. Furthermore, sensitivity and time-kill assays showed that the bactericidal activity of the Lcb. rhamnosus CRL 2244 metabolite(s) enhances the activity of some current FDA approved antibiotics. We hypothesize that this observation could be due to the effects of Lcb. rhamnosus CRL 2244 metabolite(s) on cell morphology and the enhanced transcriptional expression of genes coding for the phenylacetate (PAA) and histidine catabolic Hut pathways, metal acquisition and biofilm formation, all of which are associated with bacterial virulence. Interestingly, the extracellular presence of Lcb. rhamnosus CRL 2244 induced the transcription of the gene coding for the CidA/LgrA protein, which is involved in programmed cell death in some bacteria. Overall, the findings presented in this report underscore the promising potential of the compound(s) released by Lcb. rhamnosus CRL2244 as an alternative and/or complementary option to treat infections caused by A. baumannii as well as other MDR bacterial pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丝状噬菌体属于Tubulavirales,非病毒科,显著影响革兰氏阴性菌的特性,但是到目前为止还没有描述许多重要病原体的丝状噬菌体。这项研究的目的是首次检查鲍曼不动杆菌丝状噬菌体,并确定其对细菌毒力的影响。在15.3%的鲍曼不动杆菌菌株中检测到丝状噬菌体,作为基因组中的单个噬菌体或串联重复序列,在培养物中检测到的百分比略高(23.8%)。系统发育分析揭示了Inoviridae家族中的12个新属。选择和分离的噬菌体显示了该家族的结构和基因组特征,无法形成斑块。在宿主感染时,这些噬菌体没有显着影响细菌抽搐运动和胶囊生产,但显着影响生长动力学,减少生物膜形成,增加抗生素敏感性。对抗生素耐药性降低的可能机制之一是在丝状噬菌体感染后观察到外排泵的表达降低。
    Filamentous bacteriophages belonging to the order Tubulavirales, family Inoviridae, significantly affect the properties of Gram-negative bacteria, but filamentous phages of many important pathogens have not been described so far. The aim of this study was to examine A. baumannii filamentous phages for the first time and to determine their effect on bacterial virulence. The filamentous phages were detected in 15.3% of A. baumannii strains as individual prophages in the genome or as tandem repeats, and a slightly higher percentage was detected in the culture collection (23.8%). The phylogenetic analyses revealed 12 new genera within the Inoviridae family. Bacteriophages that were selected and isolated showed structural and genomic characteristics of the family and were unable to form plaques. Upon host infection, these phages did not significantly affect bacterial twitching motility and capsule production but significantly affected growth kinetics, reduced biofilm formation, and increased antibiotic sensitivity. One of the possible mechanisms of reduced resistance to antibiotics is the observed decreased expression of efflux pumps after infection with filamentous phages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号