ATP synthesis

ATP 合成
  • 文章类型: Journal Article
    神经元活动是一个能量密集型过程,主要由瞬时燃料利用和ATP合成维持。然而,神经元如何将ATP合成速率与燃料的可用性耦合在很大程度上是未知的。这里,我们证明了代谢传感器酶O连接的N-乙酰葡糖胺(O-GlcNAc)转移酶调节海马和皮质神经元中神经元活动驱动的线粒体生物能学。我们显示神经元活性上调线粒体中的O-GlcNAcylation。线粒体O-GlcNAcylation由活性驱动的葡萄糖消耗促进,这允许神经元根据燃料的可用性来补偿高能量消耗。为了确定负责这些调整的蛋白质,我们绘制了神经元的线粒体O-GlcNAcome。最后,我们确定,当O-GlcNAcylation动力学被阻止时,神经元无法满足活动驱动的代谢需求。我们的发现表明,O-GlcNAcylation在神经元中提供了燃料依赖性前馈控制机制,以基于神经元活性优化线粒体性能。因此,该机制将神经元代谢与线粒体生物能学偶联,并在维持能量稳态中起关键作用。
    Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-linked N-acetyl glucosamine (O-GlcNAc) transferase regulates neuronal activity-driven mitochondrial bioenergetics in hippocampal and cortical neurons. We show that neuronal activity upregulates O-GlcNAcylation in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven glucose consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在氧化磷酸化(OXPHOS)的基本过程中,氧化和ATP合成的非平衡耦合过程在生物系统中至关重要。使用OXPHOS途径的这些耦合的化学反应和运输生物能量过程满足有氧系统中>90%的ATP需求。根据实验确定的热力学OXPHOS通量-力关系和三元氧化系统的生化数据,离子传输,和ATP合成,已经计算了Onsager现象学系数,包括对误差的估计。建立了一种新的能量耦合的生物热动力学理论,并在其热力学参数的基础上,例如整体耦合程度,和现象学的化学计量学,对耦合系统进行了评估。每消耗氧气产生的ATP量,即实际的,生物系统中的操作P/O比,耦合反应的热力学效率,,和吉布斯自由能量耗散,已经计算并显示与实验数据一致。在OXPHOS状态3生理条件下ADP和ATP的浓度梯度下,产生ATP合成速率,的最大值,对应于琥珀酸盐氧化的热力学效率,已获得。已经讨论了由上述引起的新的机械见解。这是在生物学环境中3×3耦合化学反应与运输的系统的第一份报告,其中现象学系数已根据实验数据进行了评估。
    The nonequilibrium coupled processes of oxidation and ATP synthesis in the fundamental process of oxidative phosphorylation (OXPHOS) are of vital importance in biosystems. These coupled chemical reaction and transport bioenergetic processes using the OXPHOS pathway meet >90% of the ATP demand in aerobic systems. On the basis of experimentally determined thermodynamic OXPHOS flux-force relationships and biochemical data for the ternary system of oxidation, ion transport, and ATP synthesis, the Onsager phenomenological coefficients have been computed, including an estimate of error. A new biothermokinetic theory of energy coupling has been formulated and on its basis the thermodynamic parameters, such as the overall degree of coupling, q and the phenomenological stoichiometry, Z of the coupled system have been evaluated. The amount of ATP produced per oxygen consumed, i.e. the actual, operating P/O ratio in the biosystem, the thermodynamic efficiency of the coupled reactions, η, and the Gibbs free energy dissipation, Φ have been calculated and shown to be in agreement with experimental data. At the concentration gradients of ADP and ATP prevailing under state 3 physiological conditions of OXPHOS that yield Vmax rates of ATP synthesis, a maximum in Φ of ∼0.5J(hmgprotein)-1, corresponding to a thermodynamic efficiency of ∼60% for oxidation on succinate, has been obtained. Novel mechanistic insights arising from the above have been discussed. This is the first report of a 3 × 3 system of coupled chemical reactions with transport in a biological context in which the phenomenological coefficients have been evaluated from experimental data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过有氧糖酵解形成乳酸和ATP,Warburg效应,被认为是癌症的标志.在非癌组织的血管生成过程中,增殖茎内皮细胞(ECs)也通过有氧糖酵解产生乳酸和ATP。事实上,所有的增殖细胞,非癌细胞和癌细胞,需要乳酸用于细胞生长和组织扩张的构建块的生物合成。此外,肿瘤中的非增殖癌症干细胞和血管生成过程中的前导尖端ECs都依赖于糖酵解来产生丙酮酸,通过氧化磷酸化(OXPHOS)用于线粒体中的ATP合成。因此,有氧糖酵解不是癌症的特殊标志,而是细胞增殖的标志,限制了其在癌症治疗中的应用。然而,用糖酵解抑制剂局部治疗血管生成性眼部疾病可能是一种安全的治疗选择,值得进行实验研究。眼睛中的大多数类型的细胞,如光感受器和周细胞使用OXPHOS产生ATP,而增殖的血管生成茎ECs依赖于糖酵解来产生乳酸和ATP。(J组织学细胞化学XX。XXX-XXX,XXXX).
    Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由光驱动质子泵供电的三磷酸腺苷(ATP)生产模块是自下而上组装人造细胞样系统的强大工具。然而,这样的模块的最大效率被质子泵在重构过程中随机定向到脂质包围的纳米容器中所禁止。这里,我们使用一种通用的方法克服了这一限制,使光驱动质子泵蛋白视紫红质(pR)在脂质体中均匀定向。在插入预先形成的脂质体期间,pR在翻译后共价或非共价偶联至膜不可渗透的蛋白质结构域引导取向。在第二种情况下,我们开发了一种新的双功能接头,trisNTA-SpyTag,这允许任何含SpyCatcher的蛋白质和携带HisTag的蛋白质的可逆连接。通过监测矢量质子泵和膜电位的产生来验证所需的蛋白质取向。与ATP合酶结合,高效的ATP生产是由向内的抽水人口激励的。与其他光驱动ATP产生模块相比,均匀的方向允许在经济的蛋白质浓度下的最大速率。所提出的技术是高度可定制的,不限于光驱动质子泵,但适用于许多膜蛋白,并提供了一种克服膜重建过程中方向不匹配的通用方法。几乎不需要对感兴趣的蛋白质进行遗传修饰。
    Adenosine triphosphate (ATP)-producing modules energized by light-driven proton pumps are powerful tools for the bottom-up assembly of artificial cell-like systems. However, the maximum efficiency of such modules is prohibited by the random orientation of the proton pumps during the reconstitution process into lipid-surrounded nanocontainers. Here, we overcome this limitation using a versatile approach to uniformly orient the light-driven proton pump proteorhodopsin (pR) in liposomes. pR is post-translationally either covalently or noncovalently coupled to a membrane-impermeable protein domain guiding orientation during insertion into preformed liposomes. In the second scenario, we developed a novel bifunctional linker, trisNTA-SpyTag, that allows for the reversible connection of any SpyCatcher-containing protein and a HisTag-carrying protein. The desired protein orientations are verified by monitoring vectorial proton pumping and membrane potential generation. In conjunction with ATP synthase, highly efficient ATP production is energized by the inwardly pumping population. In comparison to other light-driven ATP-producing modules, the uniform orientation allows for maximal rates at economical protein concentrations. The presented technology is highly customizable and not limited to light-driven proton pumps but applicable to many membrane proteins and offers a general approach to overcome orientation mismatch during membrane reconstitution, requiring little to no genetic modification of the protein of interest.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞温度影响每个生化反应,强调其在细胞功能中的关键作用。在神经元中,温度不仅调节神经传递,而且是神经退行性疾病的关键决定因素。考虑到大脑相对于其重量消耗不成比例的大量能量,神经回路可能会产生大量的热量,可以增加细胞溶质温度。然而,神经元内温度的变化和神经兴奋过程中热的产生机制尚不清楚。在这项研究中,我们使用基因编码的指标实现了Ca2+和温度的同时成像,B-GECO和B-gTEMP。然后,我们比较了Ca2响应和温度的时空分布。在维拉替丁诱导的神经兴奋后,电压门控Na+通道的激活剂,我们观察到Ca2反应后30s的胞浆温度升高约2°C。在非核区域观察到温度升高,而Ca2+在整个细胞体中增加。此外,在无Ca2条件下和ATP合成抑制剂抑制了这种温度升高。这些结果表明,在神经兴奋期间,Ca2诱导的能量代谢上调是热源。
    Cellular temperature affects every biochemical reaction, underscoring its critical role in cellular functions. In neurons, temperature not only modulates neurotransmission but is also a key determinant of neurodegenerative diseases. Considering that the brain consumes a disproportionately high amount of energy relative to its weight, neural circuits likely generate a lot of heat, which can increase cytosolic temperature. However, the changes in temperature within neurons and the mechanisms of heat generation during neural excitation remain unclear. In this study, we achieved simultaneous imaging of Ca2+ and temperature using the genetically encoded indicators, B-GECO and B-gTEMP. We then compared the spatiotemporal distributions of Ca2+ responses and temperature. Following neural excitation induced by veratridine, an activator of the voltage-gated Na+ channel, we observed an approximately 2 °C increase in cytosolic temperature occurring 30 s after the Ca2+ response. The temperature elevation was observed in the non-nuclear region, while Ca2+ increased throughout the cell body. Moreover, this temperature increase was suppressed under Ca2+-free conditions and by inhibitors of ATP synthesis. These results indicate that Ca2+-induced upregulation of energy metabolism serves as the heat source during neural excitation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ATP(三磷酸腺苷)是生物体的重要能源,其生物合成和精确的浓度调节通常取决于由蛋白质复合物或复杂的多结构域蛋白质组成的大分子机制。我们已经鉴定了源自细菌组氨酸激酶(HK)的单结构域蛋白HK853CA,可以有效催化ATP合成。这里,我们通过实验技术和分子模拟相结合,探索了影响这种催化作用的反应机理和多种因素。此外,我们优化了其酶活性,并将其作为ATP补充机制应用于其他ATP依赖性系统。我们的结果拓宽了对ATP生物合成的理解,并表明单个CA结构域可用作用于ATP供应的新型生物分子催化剂。
    ATP (adenosine triphosphate) is a vital energy source for living organisms, and its biosynthesis and precise concentration regulation often depend on macromolecular machinery composed of protein complexes or complicated multidomain proteins. We have identified a single-domain protein HK853CA derived from bacterial histidine kinases (HK) that can catalyze ATP synthesis efficiently. Here, we explored the reaction mechanism and multiple factors that influence this catalysis through a combination of experimental techniques and molecular simulations. Moreover, we optimized its enzymatic activity and applied it as an ATP replenishment machinery to other ATP-dependent systems. Our results broaden the understanding of ATP biosynthesis and show that the single CA domain can be applied as a new biomolecular catalyst used for ATP supply.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    粘菌素是一种阳离子环状抗微生物肽,用作抵抗多重耐药性革兰氏阴性菌的最后手段。为了了解粘菌素敏感性的相关因素,我们从大肠杆菌基因敲除文库(Keio集合)中筛选粘菌素敏感突变体。PurA的淘汰赛,其产物在从头嘌呤合成途径中催化IMP合成腺苷琥珀酸,导致对粘菌素的敏感性增加。随后将腺苷琥珀酸酯转化为AMP,磷酸化产生ADP,ATP合成的底物。purA敲除突变体中的ATP量低于野生型菌株中的ATP量。ATP合成与质子转移有关,它有助于膜电位。使用膜电位探针,3,3'-二乙基氧杂碳菁碘化物[DiOC2(3)],我们发现,与野生型菌株相比,purA敲除突变体的膜是超极化的。用质子解偶联剂处理,羰基氰化物间氯苯基腙(CCCP),消除了突变体的超极化和粘菌素敏感性。purA敲除突变体对氨基糖苷类的敏感性增加,卡那霉素,和庆大霉素;它们的摄取需要膜电位。因此,PurA的淘汰赛,一种腺苷琥珀酸合酶,与膜超极化同时减少ATP合成,导致对粘菌素的敏感性增加。
    Colistin is a cationic cyclic antimicrobial peptide used as a last resort against multidrug-resistant gram-negative bacteria. To understand the factors involved in colistin susceptibility, we screened colistin-sensitive mutants from an E. coli gene-knockout library (Keio collection). The knockout of purA, whose product catalyzes the synthesis of adenylosuccinate from IMP in the de novo purine synthesis pathway, resulted in increased sensitivity to colistin. Adenylosuccinate is subsequently converted to AMP, which is phosphorylated to produce ADP, a substrate for ATP synthesis. The amount of ATP was lower in the purA-knockout mutant than that in the wild-type strain. ATP synthesis is coupled with proton transfer, and it contributes to the membrane potential. Using the membrane potential probe, 3,3\'-diethyloxacarbocyanine iodide [DiOC2(3)], we found that the membrane was hyperpolarized in the purA-knockout mutant compared to that in the wild-type strain. Treatment with the proton uncoupler, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), abolished the hyperpolarization and colistin sensitivity in the mutant. The purA-knockout mutant exhibited increased sensitivity to aminoglycosides, kanamycin, and gentamicin; their uptake requires a membrane potential. Therefore, the knockout of purA, an adenylosuccinate synthase, decreases ATP synthesis concurrently with membrane hyperpolarization, resulting in increased sensitivity to colistin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧化磷酸化(OXPHOS)生物过程中氧化和ATP合成的非平衡耦合过程是我们星球上所有生命的基础。这些稳态的能量转导过程-通过OXPHOS途径中的质子和阴离子/抗衡阳离子浓度梯度耦合-产生有氧系统对细胞功能的ATP需求的95%。参与这种偶联的代谢物的快速能量循环和稳态被证明是维持和调节稳定非平衡状态的原因。后者在1920年至1935年之间由ErvinBauer进行的开创性生物热力学工作中首次提出。这到底是如何发生的?这可以通过Nath的ATP合成扭转机制和在25年的研究工作中发展起来的两离子能量耦合理论引起的分子考虑来回答。对偶联的生物热力学进行了新的分析,该分析超出了Stucki和其他人的先前工作,并显示了该系统在分子水平上的功能。热力学参数,例如整体耦合程度,在以琥珀酸作为底物的动物线粒体中评估偶联系统的q的状态4至状态3转变。实际或有效的P-O比,偶联反应的效率,η,和吉布斯的能量耗散,Φ已被计算并显示与实验数据非常吻合。已经讨论了由上述引起的新的机械见解。已经强调了动态内部结构变化,这些变化对于FOF1-ATP合酶的单个分子中γ-亚基内的扭转能储存及其转导至关重要。这些结果提供了ErvinBauer在生物热力学中的开创性概念的分子水平实例化。
    The nonequilibrium coupled processes of oxidation and ATP synthesis in the biological process of oxidative phosphorylation (OXPHOS) are fundamental to all life on our planet. These steady-state energy transduction processes ‒ coupled by proton and anion/counter-cation concentration gradients in the OXPHOS pathway ‒ generate ∼95 % of the ATP requirement of aerobic systems for cellular function. The rapid energy cycling and homeostasis of metabolites involved in this coupling are shown to be responsible for maintenance and regulation of stable nonequilibrium states, the latter first postulated in pioneering biothermodynamics work by Ervin Bauer between 1920 and 1935. How exactly does this occur? This is shown to be answered by molecular considerations arising from Nath\'s torsional mechanism of ATP synthesis and two-ion theory of energy coupling developed in 25 years of research work on the subject. A fresh analysis of the biological thermodynamics of coupling that goes beyond the previous work of Stucki and others and shows how the system functions at the molecular level has been carried out. Thermodynamic parameters, such as the overall degree of coupling, q of the coupled system are evaluated for the state 4 to state 3 transition in animal mitochondria with succinate as substrate. The actual or operative P to O ratio, the efficiency of the coupled reactions, η, and the Gibbs energy dissipation, Φ have been calculated and shown to be in good agreement with experimental data. Novel mechanistic insights arising from the above have been discussed. A fourth law/principle of thermodynamics is formulated for a sub-class of physical and biological systems. The critical importance of constraints and time-varying boundary conditions for function and regulation is discussed in detail. Dynamic internal structural changes essential for torsional energy storage within the γ-subunit in a single molecule of the FOF1-ATP synthase and its transduction have been highlighted. These results provide a molecular-level instantiation of Ervin Bauer\'s pioneering concepts in biological thermodynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    F1FO-ATP合酶引擎通过提供生物能量ATP并在低氧胁迫条件下保持ATP稳态,对于非结核分枝杆菌(NTM)的生存能力和生长至关重要。这里,我们报道了二芳基喹啉TBAJ-5307作为广谱抗NTM抑制剂的发现,瞄准发动机的FO域,防止旋转和质子移位。TBAJ-5307在低纳摩尔浓度下对快速和缓慢生长的NTM以及通过消耗细菌内ATP的临床分离株具有活性。正如快速生长的脓肿分枝杆菌所证明的那样,该化合物在体外和体内都是有效的,不诱导毒性。TBAJ-5307与抗NTM抗生素或口服替比培南-阿维巴坦对的组合显示出诱人的增强作用。此外,TBAJ-5307-替比培南-阿维巴坦鸡尾酒杀死病原体,提出了一种治疗NTM肺部感染的新型口服组合。
    The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号