AIF, apoptosis-inducing factor

AIF,凋亡诱导因子
  • 文章类型: Journal Article
    肉碱是一种医学上需要的营养素,有助于能量的产生和脂肪酸的代谢。素食者的生物利用度高于吃肉的人。肉碱转运蛋白的缺陷是由于基因突变或与其他疾病如肝脏或肾脏疾病的组合而发生的。肉碱缺乏可能出现在内分泌疾病等疾病中,心肌病,糖尿病,营养不良,老化,脓毒症,和肝硬化由于肉碱调节异常。外源提供的分子显然对原发性肉碱缺陷的人有用,可能会危及生命,还有一些次要的缺陷,包括这种有机酸尿症:通过根除张力减退,肌肉无力,运动技能,据报道,改善左旋肉碱(LC)可以改善缺血性心脏病患者的心肌功能和代谢,以及心绞痛患者的运动表现。此外,尽管一些有趣的数据表明LC在各种条件下都是有用的,包括由长期全胃肠外补充或慢性血液透析引起的肉碱缺乏,高脂血症,以及预防蒽环类和丙戊酸引起的毒性,必须谨慎看待这些发现。
    Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    化学抗性以及由此产生的治疗失败在临床癌症治疗中是相当具有挑战性的。对化学抗性获得中的遗传变异的理解鼓励了使用基因调节方法来恢复抗癌药物的功效。许多智能纳米粒子被设计和优化以介导核酸和抗癌药物之间的组合治疗。这篇综述旨在定义这种共负载纳米载体的合理设计,目的是在各种细胞水平上逆转化学抗性,以改善抗癌治疗的治疗效果。通过治疗加载的原则,物理化学特性调整,和不同的纳米载体修饰,还研究了联合药物对化学敏感性恢复的有效性。到目前为止,这些新兴的纳米载体处于发展状态,但有望带来出色的成果。
    Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对乙酰氨基酚(APAP)是一种广泛使用的镇痛和解热药物,在治疗剂量下是安全的,但过量服用后可能导致严重的肝损伤甚至肝衰竭。APAP肝毒性小鼠模型与人类病理生理学密切相关。因此,这种临床相关模型经常用于研究药物性肝损伤的机制,甚至用于测试潜在的治疗干预措施.然而,模型的复杂性需要对病理生理学有透彻的了解,以获得有效的结果和可转化为临床的机制信息。然而,使用此模型的许多研究都存在缺陷,这危害了科学和临床的相关性。这篇综述的目的是提供一个模型框架,在该框架中可以获得机械上合理和临床相关的数据。讨论提供了对损伤机制以及如何研究它的见解,包括药物代谢的关键作用,线粒体功能障碍,坏死细胞死亡,自噬和无菌炎症反应。此外,讨论了使用此模型时最常犯的错误。因此,在研究APAP肝毒性时考虑这些建议将有助于发现更多临床相关的干预措施.
    Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钙蛋白酶是Ca2依赖性半胱氨酸蛋白酶;它们的异常激活与几种神经退行性疾病有关。μ-钙蛋白酶催化亚基,钙蛋白酶-1位于细胞质和线粒体中。线粒体钙蛋白酶-1裂解凋亡诱导因子(AIF),导致细胞凋亡。我们先前报道过,与细胞穿透肽HIV-Tat(Tat-μCL)缀合的calpain-1C2样结构域的短肽选择性抑制线粒体calpain-1并有效预防眼睛的神经退行性疾病。在这项研究中,我们使用Tat-μCL和新生成的多组氨酸缀合的μCL肽测定了线粒体钙蛋白酶-1是否介导海马HT22细胞中的氧化应激(氧化性谷氨酸毒性),并比较了它们在预防氧化应激方面的功效.TUNEL测定和单链DNA染色显示两种μCL肽均抑制谷氨酸诱导的氧化。此外,这两种肽都抑制了线粒体AIF易位到细胞核中。所有多组氨酸-μCL肽(含有4-16个组氨酸残基)显示出比Tat-μCL更高的细胞通透性。值得注意的是,四组氨酸(H4)-μCL具有最高的细胞保护活性。因此,H4-μCL可能是钙蛋白酶-1介导的神经退行性疾病如阿尔茨海默病的潜在肽类药物。
    Calpains are Ca2+-dependent cysteine proteases; their aberrant activation is associated with several neurodegenerative diseases. The μ-calpain catalytic subunit, calpain-1, is located in the cytoplasm as well as in the mitochondria. Mitochondrial calpain-1 cleaves apoptosis-inducing factor (AIF), leading to apoptotic cell death. We have previously reported that short peptides of calpain-1 C2-like domain conjugated with cell penetrating peptide HIV-Tat (Tat-μCL) selectively inhibit mitochondrial calpain-1 and effectively prevent neurodegenerative diseases of the eye. In this study, we determined whether mitochondrial calpain-1 mediates oxytosis (oxidative glutamate toxicity) in hippocampal HT22 cells using Tat-μCL and newly generated polyhistidine-conjugated μCL peptide and compared their efficacies in preventing oxytosis. TUNEL assay and single strand DNA staining revealed that both μCL peptides inhibited glutamate-induced oxytosis. Additionally, both the peptides suppressed the mitochondrial AIF translocation into the nucleus. All polyhistidine-μCL peptides (containing 4-16 histidine residues) showed higher cell permeability than Tat-μCL. Notably, tetrahistidine (H4)-μCL exerted the highest cytoprotective activity. Thus, H4-μCL may be a potential peptide drug for calpain-1-mediated neurodegenerative diseases such as Alzheimer\'s disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    溶质载体(SLC)转运蛋白冥想许多基本的生理功能,包括营养吸收,离子流入/流出,和废物处理。在对抗肿瘤和感染的保护作用中,哺乳动物免疫系统协调复杂的信号来支持增殖,分化,和单个细胞亚群的效应子功能。最近在这一领域的研究已经产生了令人惊讶的发现溶质载体转运蛋白的作用,它们被发现调节淋巴细胞信号并控制其分化,函数,和命运通过调节不同的代谢途径和不同代谢物的平衡水平。在这次审查中,我们目前的信息主要是关于葡萄糖转运蛋白,氨基酸转运蛋白,和金属离子输送器,这对于在许多不同的病理条件下介导免疫细胞稳态至关重要。
    Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Severe inborn cardiac malformations are typically corrected in cardioplegia, with a cardio-pulmonary bypass (CPB) taking over body circulation. During the operation the arrested hearts are subjected to a global ischemia/reperfusion injury. Although the applied cardioplegic solutions have a certain protective effect, application of additional substances to reduce cardiac damage are of interest.18 domestic piglets (10-15 kg) were subjected to a 90 min CPB and a 120 min reperfusion phase without or with the application of epigallocatechin-3-gallate (10 mg/kg body weight) or minocycline (4 mg/kg body weight), with both drugs given before and after CPB. 18 additional sham-operated piglets without or with epigallocatechin-3-gallate or minocycline served as controls. In total 36 piglets were analyzed (3 CPB-groups and 3 control groups without or with epigallocatechin-3-gallate or minocycline respectively; 6 piglets per group). Hemodynamic and blood parameters and ATP-measurements were assessed. Moreover, a histological evaluation of the heart muscle was performed.
    UNASSIGNED: Piglets of the CPB-group needed more catecholamine support to achieve sufficient blood pressure. Ejection fraction and cardiac output were not different between the 6 groups. However, cardiac ATP-levels and blood lactate were significantly lower and creatine kinase was significantly higher in the three CPB-groups. Markers of apoptosis, hypoxia, nitrosative and oxidative stress were significantly elevated in hearts of the CPB-group. Nevertheless, addition of epigallocatechin-3-gallate or minocycline significantly reduced markers of myocardial damage. Noteworthy, EGCG was more effective in reducing markers of hypoxia, whereas minocycline more efficiently decreased inflammation.
    UNASSIGNED: While epigallocatechin-3-gallate or minocycline did not improve cardiac hemodynamics, markers of myocardial damage were significantly lower in the CPB-groups with epigallocatechin-3-gallate or minocycline supplementation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The divalent metal transporter (DMT1) is well known for its roles in duodenal iron absorption across the apical enterocyte membrane, in iron efflux from the endosome during transferrin-dependent cellular iron acquisition, as well as in uptake of non-transferrin bound iron in many cells. Recently, using multiple approaches, we have obtained evidence that the mitochondrial outer membrane is another subcellular locale of DMT1 expression. While iron is of vital importance for mitochondrial energy metabolism, its delivery is likely to be tightly controlled due to iron\'s damaging redox properties. Here we provide additional support for a role of DMT1 in mitochondrial iron acquisition by immunofluorescence colocalization with mitochondrial markers in cells and isolated mitochondria, as well as flow cytometric quantification of DMT1-positive mitochondria from an inducible expression system. Physiological consequences of mitochondrial DMT1 expression are discussed also in consideration of other DMT1 substrates, such as manganese, relevant to mitochondrial antioxidant defense.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号