endoplasmic reticulum

内质网
  • 文章类型: Journal Article
    糖尿病,一种普遍的慢性病,显著增加了COVID-19的死亡风险,但潜在的机制仍然难以捉摸。新的证据表明组织蛋白酶L(CTSL)与糖尿病并发症有关,包括肾病和视网膜病变。我们先前的研究将CTSL确定为促进SARS-CoV-2感染的关键蛋白酶。这里,我们证明糖尿病患者的血液CTSL水平升高,促进SARS-CoV-2感染。慢性高血糖与糖尿病患者的CTSL浓度和活动呈正相关,而急性高血糖会增加健康个体的CTSL活性。体外研究显示高糖,但不是胰岛素,在野生型细胞中促进SARS-CoV-2感染,CTSL敲除细胞显示降低的易感性。利用糖尿病和非糖尿病患者的肺组织样本,与Leprdb/dbmouse和Leprdb/+小鼠一起,我们说明了在糖尿病条件下,人和小鼠的CTSL活性增加。机械上,高葡萄糖水平促进CTSL成熟并通过内质网(ER)-高尔基体-溶酶体轴从内质网(ER)转位到溶酶体。我们的发现强调了高血糖诱导的CTSL成熟在糖尿病合并症和并发症中的关键作用。
    糖尿病患者患严重COVID-19并死于这种疾病的风险更大,这是由一种称为SARS-CoV-2的病毒引起的。与糖尿病相关的高血糖水平似乎是导致这种风险增加的因素。然而,糖尿病是一种复杂的疾病,包括一系列代谢紊乱,因此,其他因素可能会有所贡献。先前的研究确定了一种称为组织蛋白酶L的酶与糖尿病患者中更严重的COVID-19之间的联系。已知升高的组织蛋白酶L水平有助于糖尿病并发症。如肾脏损伤和视力丧失。还显示组织蛋白酶L有助于SARS-CoV-2进入并感染细胞。这提出了一个问题,即升高的组织蛋白酶L是否导致糖尿病患者COVID-19脆弱性增加。为了调查,他,赵等人。监测COVID-19患者的疾病严重程度和组织蛋白酶L水平。这证实了糖尿病患者的COVID-19更为严重,组织蛋白酶L水平越高,疾病越严重。分析还显示组织蛋白酶L活性随着血糖水平的增加而增加。在实验室实验中,糖尿病患者血液中暴露于葡萄糖或液体的细胞更容易感染SARS-CoV-2,而经过基因修饰而缺乏组织蛋白酶L的细胞对感染的抵抗力更强。进一步的实验表明,这是由于葡萄糖促进了细胞中组织蛋白酶L的成熟和迁移。他的发现,赵等人。这有助于解释为什么糖尿病患者更容易患上严重或致命的COVID-19。因此,控制糖尿病患者的血糖水平可能有助于预防或减轻疾病的严重程度。此外,针对组织蛋白酶L的治疗也可能有助于治疗COVID-19,特别是在糖尿病患者中,尽管需要更多的研究来开发和测试这些治疗方法。
    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
    People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    草酸盐对肾小管上皮细胞(RTEC)的损害是肾结石事件的重要因素。但具体机制尚不清楚。最近的研究已经确定了内质网和线粒体内的相互作用区域,称为线粒体相关膜(MAMs)。这些研究将内质网应激(ERS)和氧化失衡与肾脏疾病的发展联系起来。sigma-1受体(S1R),在MAMs中发现的一种特定蛋白质,参与各种生理过程,但其在草酸盐诱导的肾结石形成中的作用尚不清楚。在这项研究中,我们建立了草酸盐诱导的肾结石形成的细胞和大鼠模型,以阐明S1R对ERS和细胞凋亡的影响及其在草酸盐诱导的RTEC损伤中的机制。我们发现草酸盐下调RTEC中S1R的表达,并加剧氧化应激和ERS,最终导致细胞凋亡增加。S1R激动剂二记忆体上调S1R表达,减轻ERS和氧化应激,从而减少细胞凋亡。这种保护作用是通过S1R抑制CHOP途径介导的。动物实验表明,S1R的激活减轻了草酸盐引起的肾损伤,减轻了肾结石的形成。这是第一个建立S1R与肾结石之间联系的研究,提示S1R在抑制ERS介导的细胞凋亡以改善肾结石形成中的保护作用。
    Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R\'s effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R\'s activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R\'s protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    未折叠蛋白反应(UPR)是一种保守的和适应性的细胞内途径,其通过激活内质网(ER)跨膜应激传感器来缓解内质网(ER)应激。作为ER压力的结果,无义介导的mRNA衰减(NMD)的抑制是由于eIF2α磷酸化的增加,具有抑制翻译的作用。然而,NMD在维持ER稳态中的作用尚不清楚.在这项研究中,我们发现这三个NMD因素,上移码(UPF)1、UPF2或UPF3B,被要求否定普遍定期审议。在这三个NMD因素中,只有UPF3B与需要肌醇的酶1α(IRE1α)相互作用。这种相互作用抑制了IRE1α的激酶活性,取消了自磷酸化,并减少了ER压力的IRE1α聚类。BiP和UPF3B共同控制ER膜两侧IRE1α的活化。在应力条件下,UPF3B的磷酸化增加,并鉴定了磷酸化位点。UPF3B在Thr169的UPF3BY160D基因突变和磷酸化分别消除了其与IRE1α和UPF2的相互作用,导致内质网应激和NMD功能障碍的激活。我们的研究揭示了UPF3B在NMD和ER应激之间的相互调节关系中的关键生理作用。
    The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    保持线粒体网络的健康对于细胞活力和寿命至关重要。要做到这一点,线粒体采用几种膜重塑机制,包括线粒体来源的囊泡(MDV)和区室(MDC)的形成,以选择性地去除细胞器的部分。与特征明确的MDV相比,MDC形成和组成的区别特征仍不清楚。这里,我们使用电子层析成像来观察MDC的大小,在ER-线粒体接触部位产生从线粒体小管出现的同心球形区室的多层结构域。MDC生物发生的延时荧光显微镜显示,线粒体膜延伸反复拉长,合并,并内陷形成这些包裹多层膜的隔室。因此,MDC强烈隔离线粒体外膜的部分,将膜货物固定到受保护的域中,同时也将胞质材料封闭在MDC腔内。总的来说,我们的结果为MDC形成提供了一个模型,并描述了将MDC与其他先前鉴定的线粒体结构和货物分选域区分开的关键特征.
    Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here, we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶UDP-葡萄糖:糖蛋白葡萄糖基转移酶(UGGT)是内质网(ER)内蛋白质折叠的看门人。三分之一的人类蛋白质组穿过ER,其中复杂的蛋白质稳态网络促进了折叠和成熟。聚糖修饰和二硫键在这些ER蛋白的成熟中都是关键的。UGGT的作用与用于内质网中分泌蛋白的折叠和成熟的聚糖密码密切相关。UGGT选择性地对错误折叠蛋白质的N-连接的聚糖进行葡糖化,使得它们可以重新进入凝集素-折叠伴侣循环并保留在ER内用于进一步的折叠尝试。UGGT功能的一个有趣的方面是它与它鲜为人知的伴侣的相互作用,称为SELENOF或SEP15的15kDa硒蛋白。这种小蛋白含有一个稀有的硒代半胱氨酸残基,被提议充当UGGT底物的氧化还原酶。AlphaFold2对UGGT1/SEP15复合物的预测提供了对该复合物在结构水平上的了解。通过诱变和共免疫沉淀实验验证了预测的UGGT1/SEP15相互作用界面。这些结果可作为UGGT1和SEP15综合作用模型的跳板。
    The enzyme UDP-glucose: glycoprotein glucosyltransferase (UGGT) is the gatekeeper of protein folding within the endoplasmic reticulum (ER). One-third of the human proteome traverses the ER where folding and maturation are facilitated by a complex protein homeostasis network. Both glycan modifications and disulfide bonds are of key importance in the maturation of these ER proteins. The actions of UGGT are intimately linked to the glycan code for folding and maturation of secretory proteins in the ER. UGGT selectively glucosylates the N-linked glycan of misfolded proteins so that they can reenter the lectin-folding chaperone cycle and be retained within the ER for further attempts at folding. An intriguing aspect of UGGT function is its interaction with its poorly understood cochaperone, the 15 kDa selenoprotein known as SELENOF or SEP15. This small protein contains a rare selenocysteine residue proposed to act as an oxidoreductase toward UGGT substrates. AlphaFold2 predictions of the UGGT1/SEP15 complex provide insight into this complex at a structural level. The predicted UGGT1/SEP15 interaction interface was validated by mutagenesis and coimmunoprecipitation experiments. These results serve as a springboard for models of the integrated action of UGGT1 and SEP15.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体功能可以通过与内质网(ER)的膜接触位点来调节。这些线粒体-ER接触位点(MERC)在功能上是异质的,并由各种系链维持。这里,我们发现REEP5,一种ER小管形成蛋白,与Mitofusins1/2相互作用,通过新的转运机制介导线粒体在整个细胞质中的分布,线粒体“搭便车”与微管上的管状ER。REEP5耗竭导致线粒体的系链减少和核周定位增加。相反,增加REEP5表达促进线粒体在整个细胞质中的分布。雷帕霉素诱导的不可逆的REEP5-MFN1/2相互作用导致线粒体高度融合,这意味着线粒体从束缚中动态释放对于正常的线粒体分布和动力学是必需的。功能上,通过强制二聚化或沉默REEP5破坏MFN2-REEP5相互作用动力学调节线粒体活性氧(ROS)的产生。总的来说,我们的结果表明,动态REEP5-MFN1/2相互作用通过“搭便车”介导线粒体网络的胞浆分布和连通性,并且该过程调节线粒体ROS,这对多种生理功能至关重要。
    Mitochondrial functions can be regulated by membrane contact sites with the endoplasmic reticulum (ER). These mitochondria-ER contact sites (MERCs) are functionally heterogeneous and maintained by various tethers. Here, we found that REEP5, an ER tubule-shaping protein, interacts with Mitofusins 1/2 to mediate mitochondrial distribution throughout the cytosol by a new transport mechanism, mitochondrial \"hitchhiking\" with tubular ER on microtubules. REEP5 depletion led to reduced tethering and increased perinuclear localization of mitochondria. Conversely, increasing REEP5 expression facilitated mitochondrial distribution throughout the cytoplasm. Rapamycin-induced irreversible REEP5-MFN1/2 interaction led to mitochondrial hyperfusion, implying that the dynamic release of mitochondria from tethering is necessary for normal mitochondrial distribution and dynamics. Functionally, disruption of MFN2-REEP5 interaction dynamics by forced dimerization or silencing REEP5 modulated the production of mitochondrial reactive oxygen species (ROS). Overall, our results indicate that dynamic REEP5-MFN1/2 interaction mediates cytosolic distribution and connectivity of the mitochondrial network by \"hitchhiking\" and this process regulates mitochondrial ROS, which is vital for multiple physiological functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数分泌蛋白通过“常规”内质网-高尔基体胞吐途径转运,以将其递送到细胞表面并释放到细胞外空间。尽管如此,形成性发现强调了替代或“非常规”分泌途径的存在,它们在响应内在需求而向细胞外输出多种细胞溶质蛋白中起着至关重要的作用,外部线索,和环境变化。在这种情况下,溶酶体作为动态细胞器出现,位于多个细胞内运输途径的十字路口,具有与质膜融合的能力,并因其在常规和非常规蛋白质分泌中的关键作用而被认可。最近对货物蛋白非常规分泌中的溶酶体运输和胞吐作用的认识为我们对许多生理过程的理解提供了新的和有希望的见解。
    Most secreted proteins are transported through the \"conventional\" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or \"unconventional\" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    糖基磷脂酰肌醇(GPI)是在真核生物中普遍存在的糖脂。它们由聚糖和肌醇磷脂组成,并通过共价连接至其C端而充当许多细胞表面蛋白的膜锚。GPI也作为未链接存在,细胞表面的游离糖脂。在人类细胞中,至少160种具有各种功能的蛋白质是GPI锚定蛋白(GPI-AP)。由于GPI-AP的细胞表面表达需要GPI的附着,全面了解哺乳动物GPI-AP生物合成的分子基础对于理解GPI-AP的基本生物化学和生物学及其医学意义非常重要。在本文中,我回顾了我们以前对哺乳动物GPI-AP生物合成的了解,然后研究了自2020年以来的新发现。
    Glycosylphosphatidylinositols (GPIs) are glycolipids found ubiquitously in eukaryotes. They consist of a glycan and an inositol phospholipid, and act as membrane anchors of many cell-surface proteins by covalently linking to their C-termini. GPIs also exist as unlinked, free glycolipids on the cell surface. In human cells, at least 160 proteins with various functions are GPI-anchored proteins (GPI-APs). Because the attachment of GPI is required for the cell-surface expression of GPI-APs, a thorough knowledge of the molecular basis of mammalian GPI-AP biosynthesis is important for understanding the basic biochemistry and biology of GPI-APs and their medical significance. In this paper, I review our previous knowledge of the biosynthesis of mammalian GPI-APs and then examine new findings made since 2020.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在生活的所有领域,核糖体-转位复合物将新生的跨膜蛋白插入,处理和运输含信号肽的蛋白质,膜。真核转环体锚定在内质网中,而原核复合物存在于细胞膜中。系统发育分析表明,真核生物Sec61/OST/TRAP转位子亚基从Asgard古细菌祖先遗传。然而,真核发生过程中从外周膜向内部细胞区室(原内质网)转移的机制尚不清楚。在这里,我们显示了真核核糖体-转位子复合物与Asgard信号肽和跨膜蛋白之间的相容性。我们发现,来自念珠菌原发菌菌株MK-D1的Asgard转位蛋白,Lokiarchaear被证实不含内部细胞膜,定位于真核内质网上的异位表达。此外,我们表明,MK-D1OST1(病毒蛋白I)的细胞质结构域可以与真核核糖体相互作用。我们的数据表明,现有核糖体-转位复合物的位置,在蛋白质水平上,确定尚未翻译的转位子亚基的未来位置。这个原理预测在真核发生过程中,在积极的选择压力下,一些转位复合物重新定位到原内质网将有助于传播新的转位位置,导致它们从细胞膜上丢失。
    In all domains of life, the ribosome-translocon complex inserts nascent transmembrane proteins into, and processes and transports signal peptide-containing proteins across, membranes. Eukaryotic translocons are anchored in the endoplasmic reticulum, while the prokaryotic complexes reside in cell membranes. Phylogenetic analyses indicate inheritance of eukaryotic Sec61/OST/TRAP translocon subunits from an Asgard archaea ancestor. However, the mechanism for translocon migration from a peripheral membrane to an internal cellular compartment (the proto-endoplasmic reticulum) during eukaryogenesis is unknown. Here we show compatibility between the eukaryotic ribosome-translocon complex and Asgard signal peptides and transmembrane proteins. We find that Asgard translocon proteins from Candidatus Prometheoarchaeum syntrophicum strain MK-D1, a Lokiarchaeon confirmed to contain no internal cellular membranes, are targeted to the eukaryotic endoplasmic reticulum on ectopic expression. Furthermore, we show that the cytoplasmic domain of MK-D1 OST1 (ribophorin I) can interact with eukaryotic ribosomes. Our data indicate that the location of existing ribosome-translocon complexes, at the protein level, determines the future placement of yet to be translated translocon subunits. This principle predicts that during eukaryogenesis, under positive selection pressure, the relocation of a few translocon complexes to the proto-endoplasmic reticulum will have contributed to propagating the new translocon location, leading to their loss from the cell membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    KuwanonC是桑树家族中发现的一种独特的类黄酮,特征为两个异戊烯基。虽然以前的研究集中在kuwanonC的各种性质上,如抗氧化剂,低血糖,抗菌,食品保存,皮肤美白,和线虫寿命延长,很少有人关注它在肿瘤疾病中的潜在作用。在这项研究中,我们研究了kuwanonC在宫颈癌细胞中的抗肿瘤作用,并阐明了其具体作用机制。我们使用各种实验技术评估了kuwanonC的抗肿瘤作用,包括细胞增殖试验,伤口愈合试验,EdU488增殖试验,线粒体膜电位测定,ROS水平测定,细胞周期,细胞凋亡分析,以及KuwanonC靶位点和分子对接的研究。结果表明,kuwanonC显著影响HeLa细胞的细胞周期进程,破坏了它们的线粒体膜电位,并诱导细胞内ROS水平的大幅增加。此外,kuwanonC对HeLa细胞表现出明显的抗增殖和促凋亡作用,超越了紫杉醇、顺铂等常用抗肿瘤药物的性能。值得注意的是,与紫杉醇相比,kuwanonC表现出优异的疗效,同时也更容易获得。我们的研究表明,kuwanonC通过与线粒体和内质网膜的相互作用发挥强大的抗肿瘤作用,诱导大量产生ROS,破坏了它们的正常结构,抑制细胞周期进程,并刺激凋亡信号通路,最终导致HeLa肿瘤细胞死亡。作为源自桑属的异戊烯基化合物,kuwanonC有望成为开发有效抗肿瘤药物的潜在候选人。
    Kuwanon C is a unique flavonoid found in the mulberry family, characterized by two isopentenyl groups. While previous research has focused on various properties of kuwanon C, such as antioxidant, hypoglycemic, antimicrobial, food preservation, skin whitening, and nematode lifespan extension, little attention has been given to its potential role in oncological diseases. In this study, we investigate the antitumor effect of kuwanon C in cervical cancer cells and elucidate its specific mechanism of action. We assessed the antitumor effects of kuwanon C using various experimental techniques, including cell proliferation assay, wound healing assays, EdU 488 proliferation assay, mitochondrial membrane potential assay, ROS level assay, cell cycle, apoptosis analysis, and studies on kuwanon C target sites and molecular docking. The results revealed that kuwanon C significantly impacted the cell cycle progression of HeLa cells, disrupted their mitochondrial membrane potential, and induced a substantial increase in intracellular ROS levels. Moreover, kuwanon C exhibited notable anti-proliferative and pro-apoptotic effects on HeLa cells, surpassing the performance of commonly used antitumor drugs such as paclitaxel and cisplatin. Notably, kuwanon C demonstrated superior efficacy while also being more easily accessible compared to paclitaxel. Our study demonstrates that kuwanon C exerts potent antitumor effects by its interaction with the mitochondrial and endoplasmic reticulum membranes, induces a significant production of ROS, disrupts their normal structure, inhibits cell cycle progression, and stimulates apoptotic signaling pathways, ultimately resulting in the death of HeLa tumor cells. As an isopentenyl compound derived from Morus alba, kuwanon C holds great promise as a potential candidate for the development of effective antitumor drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号