endoplasmic reticulum

内质网
  • 文章类型: Journal Article
    糖尿病,一种普遍的慢性病,显著增加了COVID-19的死亡风险,但潜在的机制仍然难以捉摸。新的证据表明组织蛋白酶L(CTSL)与糖尿病并发症有关,包括肾病和视网膜病变。我们先前的研究将CTSL确定为促进SARS-CoV-2感染的关键蛋白酶。这里,我们证明糖尿病患者的血液CTSL水平升高,促进SARS-CoV-2感染。慢性高血糖与糖尿病患者的CTSL浓度和活动呈正相关,而急性高血糖会增加健康个体的CTSL活性。体外研究显示高糖,但不是胰岛素,在野生型细胞中促进SARS-CoV-2感染,CTSL敲除细胞显示降低的易感性。利用糖尿病和非糖尿病患者的肺组织样本,与Leprdb/dbmouse和Leprdb/+小鼠一起,我们说明了在糖尿病条件下,人和小鼠的CTSL活性增加。机械上,高葡萄糖水平促进CTSL成熟并通过内质网(ER)-高尔基体-溶酶体轴从内质网(ER)转位到溶酶体。我们的发现强调了高血糖诱导的CTSL成熟在糖尿病合并症和并发症中的关键作用。
    糖尿病患者患严重COVID-19并死于这种疾病的风险更大,这是由一种称为SARS-CoV-2的病毒引起的。与糖尿病相关的高血糖水平似乎是导致这种风险增加的因素。然而,糖尿病是一种复杂的疾病,包括一系列代谢紊乱,因此,其他因素可能会有所贡献。先前的研究确定了一种称为组织蛋白酶L的酶与糖尿病患者中更严重的COVID-19之间的联系。已知升高的组织蛋白酶L水平有助于糖尿病并发症。如肾脏损伤和视力丧失。还显示组织蛋白酶L有助于SARS-CoV-2进入并感染细胞。这提出了一个问题,即升高的组织蛋白酶L是否导致糖尿病患者COVID-19脆弱性增加。为了调查,他,赵等人。监测COVID-19患者的疾病严重程度和组织蛋白酶L水平。这证实了糖尿病患者的COVID-19更为严重,组织蛋白酶L水平越高,疾病越严重。分析还显示组织蛋白酶L活性随着血糖水平的增加而增加。在实验室实验中,糖尿病患者血液中暴露于葡萄糖或液体的细胞更容易感染SARS-CoV-2,而经过基因修饰而缺乏组织蛋白酶L的细胞对感染的抵抗力更强。进一步的实验表明,这是由于葡萄糖促进了细胞中组织蛋白酶L的成熟和迁移。他的发现,赵等人。这有助于解释为什么糖尿病患者更容易患上严重或致命的COVID-19。因此,控制糖尿病患者的血糖水平可能有助于预防或减轻疾病的严重程度。此外,针对组织蛋白酶L的治疗也可能有助于治疗COVID-19,特别是在糖尿病患者中,尽管需要更多的研究来开发和测试这些治疗方法。
    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.
    People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    草酸盐对肾小管上皮细胞(RTEC)的损害是肾结石事件的重要因素。但具体机制尚不清楚。最近的研究已经确定了内质网和线粒体内的相互作用区域,称为线粒体相关膜(MAMs)。这些研究将内质网应激(ERS)和氧化失衡与肾脏疾病的发展联系起来。sigma-1受体(S1R),在MAMs中发现的一种特定蛋白质,参与各种生理过程,但其在草酸盐诱导的肾结石形成中的作用尚不清楚。在这项研究中,我们建立了草酸盐诱导的肾结石形成的细胞和大鼠模型,以阐明S1R对ERS和细胞凋亡的影响及其在草酸盐诱导的RTEC损伤中的机制。我们发现草酸盐下调RTEC中S1R的表达,并加剧氧化应激和ERS,最终导致细胞凋亡增加。S1R激动剂二记忆体上调S1R表达,减轻ERS和氧化应激,从而减少细胞凋亡。这种保护作用是通过S1R抑制CHOP途径介导的。动物实验表明,S1R的激活减轻了草酸盐引起的肾损伤,减轻了肾结石的形成。这是第一个建立S1R与肾结石之间联系的研究,提示S1R在抑制ERS介导的细胞凋亡以改善肾结石形成中的保护作用。
    Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development. The sigma-1 receptor (S1R), a specific protein found in MAMs, is involved in various physiological processes, but its role in oxalate-induced kidney stone formation remains unclear. In this study, we established cellular and rat models of oxalate-induced kidney stone formation to elucidate the S1R\'s effects against ERS and apoptosis and its mechanism in oxalate-induced RTEC injury. We found that oxalate downregulated S1R expression in RTECs and escalated oxidative stress and ERS, culminating in increased apoptosis. The S1R agonist dimemorfan up-regulated S1R expression and mitigated ERS and oxidative stress, thereby reducing apoptosis. This protective effect was mediated through S1R inhibition of the CHOP pathway. Animal experiments demonstrated that S1R\'s activation attenuated oxalate-induced kidney injury and alleviated kidney stone formation. This is the first study to establish the connection between S1R and kidney stones, suggesting S1R\'s protective role in inhibiting ERS-mediated apoptosis to ameliorate kidney stone formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    未折叠蛋白反应(UPR)是一种保守的和适应性的细胞内途径,其通过激活内质网(ER)跨膜应激传感器来缓解内质网(ER)应激。作为ER压力的结果,无义介导的mRNA衰减(NMD)的抑制是由于eIF2α磷酸化的增加,具有抑制翻译的作用。然而,NMD在维持ER稳态中的作用尚不清楚.在这项研究中,我们发现这三个NMD因素,上移码(UPF)1、UPF2或UPF3B,被要求否定普遍定期审议。在这三个NMD因素中,只有UPF3B与需要肌醇的酶1α(IRE1α)相互作用。这种相互作用抑制了IRE1α的激酶活性,取消了自磷酸化,并减少了ER压力的IRE1α聚类。BiP和UPF3B共同控制ER膜两侧IRE1α的活化。在应力条件下,UPF3B的磷酸化增加,并鉴定了磷酸化位点。UPF3B在Thr169的UPF3BY160D基因突变和磷酸化分别消除了其与IRE1α和UPF2的相互作用,导致内质网应激和NMD功能障碍的激活。我们的研究揭示了UPF3B在NMD和ER应激之间的相互调节关系中的关键生理作用。
    The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体功能可以通过与内质网(ER)的膜接触位点来调节。这些线粒体-ER接触位点(MERC)在功能上是异质的,并由各种系链维持。这里,我们发现REEP5,一种ER小管形成蛋白,与Mitofusins1/2相互作用,通过新的转运机制介导线粒体在整个细胞质中的分布,线粒体“搭便车”与微管上的管状ER。REEP5耗竭导致线粒体的系链减少和核周定位增加。相反,增加REEP5表达促进线粒体在整个细胞质中的分布。雷帕霉素诱导的不可逆的REEP5-MFN1/2相互作用导致线粒体高度融合,这意味着线粒体从束缚中动态释放对于正常的线粒体分布和动力学是必需的。功能上,通过强制二聚化或沉默REEP5破坏MFN2-REEP5相互作用动力学调节线粒体活性氧(ROS)的产生。总的来说,我们的结果表明,动态REEP5-MFN1/2相互作用通过“搭便车”介导线粒体网络的胞浆分布和连通性,并且该过程调节线粒体ROS,这对多种生理功能至关重要。
    Mitochondrial functions can be regulated by membrane contact sites with the endoplasmic reticulum (ER). These mitochondria-ER contact sites (MERCs) are functionally heterogeneous and maintained by various tethers. Here, we found that REEP5, an ER tubule-shaping protein, interacts with Mitofusins 1/2 to mediate mitochondrial distribution throughout the cytosol by a new transport mechanism, mitochondrial \"hitchhiking\" with tubular ER on microtubules. REEP5 depletion led to reduced tethering and increased perinuclear localization of mitochondria. Conversely, increasing REEP5 expression facilitated mitochondrial distribution throughout the cytoplasm. Rapamycin-induced irreversible REEP5-MFN1/2 interaction led to mitochondrial hyperfusion, implying that the dynamic release of mitochondria from tethering is necessary for normal mitochondrial distribution and dynamics. Functionally, disruption of MFN2-REEP5 interaction dynamics by forced dimerization or silencing REEP5 modulated the production of mitochondrial reactive oxygen species (ROS). Overall, our results indicate that dynamic REEP5-MFN1/2 interaction mediates cytosolic distribution and connectivity of the mitochondrial network by \"hitchhiking\" and this process regulates mitochondrial ROS, which is vital for multiple physiological functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    KuwanonC是桑树家族中发现的一种独特的类黄酮,特征为两个异戊烯基。虽然以前的研究集中在kuwanonC的各种性质上,如抗氧化剂,低血糖,抗菌,食品保存,皮肤美白,和线虫寿命延长,很少有人关注它在肿瘤疾病中的潜在作用。在这项研究中,我们研究了kuwanonC在宫颈癌细胞中的抗肿瘤作用,并阐明了其具体作用机制。我们使用各种实验技术评估了kuwanonC的抗肿瘤作用,包括细胞增殖试验,伤口愈合试验,EdU488增殖试验,线粒体膜电位测定,ROS水平测定,细胞周期,细胞凋亡分析,以及KuwanonC靶位点和分子对接的研究。结果表明,kuwanonC显著影响HeLa细胞的细胞周期进程,破坏了它们的线粒体膜电位,并诱导细胞内ROS水平的大幅增加。此外,kuwanonC对HeLa细胞表现出明显的抗增殖和促凋亡作用,超越了紫杉醇、顺铂等常用抗肿瘤药物的性能。值得注意的是,与紫杉醇相比,kuwanonC表现出优异的疗效,同时也更容易获得。我们的研究表明,kuwanonC通过与线粒体和内质网膜的相互作用发挥强大的抗肿瘤作用,诱导大量产生ROS,破坏了它们的正常结构,抑制细胞周期进程,并刺激凋亡信号通路,最终导致HeLa肿瘤细胞死亡。作为源自桑属的异戊烯基化合物,kuwanonC有望成为开发有效抗肿瘤药物的潜在候选人。
    Kuwanon C is a unique flavonoid found in the mulberry family, characterized by two isopentenyl groups. While previous research has focused on various properties of kuwanon C, such as antioxidant, hypoglycemic, antimicrobial, food preservation, skin whitening, and nematode lifespan extension, little attention has been given to its potential role in oncological diseases. In this study, we investigate the antitumor effect of kuwanon C in cervical cancer cells and elucidate its specific mechanism of action. We assessed the antitumor effects of kuwanon C using various experimental techniques, including cell proliferation assay, wound healing assays, EdU 488 proliferation assay, mitochondrial membrane potential assay, ROS level assay, cell cycle, apoptosis analysis, and studies on kuwanon C target sites and molecular docking. The results revealed that kuwanon C significantly impacted the cell cycle progression of HeLa cells, disrupted their mitochondrial membrane potential, and induced a substantial increase in intracellular ROS levels. Moreover, kuwanon C exhibited notable anti-proliferative and pro-apoptotic effects on HeLa cells, surpassing the performance of commonly used antitumor drugs such as paclitaxel and cisplatin. Notably, kuwanon C demonstrated superior efficacy while also being more easily accessible compared to paclitaxel. Our study demonstrates that kuwanon C exerts potent antitumor effects by its interaction with the mitochondrial and endoplasmic reticulum membranes, induces a significant production of ROS, disrupts their normal structure, inhibits cell cycle progression, and stimulates apoptotic signaling pathways, ultimately resulting in the death of HeLa tumor cells. As an isopentenyl compound derived from Morus alba, kuwanon C holds great promise as a potential candidate for the development of effective antitumor drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰高血糖素样肽1(GLP1),它主要从肠道的肠内分泌细胞(EEC)中的胰高血糖素原加工和裂解,作用于胰腺细胞中的GLP1受体以刺激胰岛素分泌和抑制胰高血糖素分泌。然而,GLP1处理没有被完全理解。这里,我们显示网状结构4B(Nogo-B),内质网(ER)驻留蛋白,与胰高血糖素原的主要胰高血糖素原片段相互作用以将胰高血糖素原保留在ER上,从而抑制PCSK1介导的高尔基体中胰高血糖素原的裂解。男性2型糖尿病(T2DM)小鼠的肠道Nogo-B基因敲除会增加GLP1和胰岛素水平,并降低胰高血糖素水平,从而减轻胰腺损伤和胰岛素抵抗。最后,我们发现糖尿病患者EECs中Nogo-B表达异常升高并抑制胰高血糖素原裂解。我们的研究揭示了在GLP1生产过程中涉及Nogo-B的亚细胞调节过程,并表明肠道Nogo-B是T2DM的潜在治疗靶标。
    Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    先兆子痫(PE)是一种威胁生命的妊娠特异性并发症,具有有争议的机制,除分娩外尚无有效的治疗方法。目前,越来越多的研究人员认为,PE与蛋白质错误折叠/聚集障碍具有共同的病理生理学特征,例如阿尔茨海默病(AD)。有证据表明,有缺陷的自噬是PE中蛋白质聚集的潜在来源。内质网选择性自噬(ER-phagy)在清除错误折叠的蛋白质和维持ER稳态中起关键作用。然而,其在PE的分子病理学中的作用尚不清楚。我们发现lncRNADUXAP8在先兆子痫胎盘中上调,并与临床指标显着相关。DUXAP8特异性结合PCBP2并抑制其泛素化介导的降解,PCBP2水平的降低逆转了DUXAP8过表达对AKT/mTOR信号通路的激活作用。功能实验表明,DUXAP8过表达抑制滋养细胞增殖,迁移,以及HTR-8/SVneo和JAR细胞的侵袭。此外,在DUXAP8过表达的HTR8/SVneo细胞和PE胎盘绒毛滋养层细胞中观察到肿胀和溶解ER(内质网)的病理积累,这表明ER清除能力受损。进一步的研究发现,DUXAP8过表达通过激活AKT/mTOR信号通路降低FAM134B和LC3II(参与ER-phagy的关键蛋白)表达,从而损害ER-phagy并引起蛋白聚集。FAM134B水平的升高显著逆转了DUXAP8过表达对细胞增殖的抑制作用,迁移,和滋养层的入侵。在体内,通过尾静脉注射DUXAP8过表达腺病毒在妊娠大鼠中诱导的PE样表型,并伴有激活的AKT/mTOR信号,胎盘组织中FAM134B和LC3-II蛋白表达降低,蛋白聚集增加。我们的研究揭示了lncRNADUXAP8在通过FAM134B介导的ER-吞噬调节滋养细胞生物学行为中的重要作用。为认识PE的发病机制提供了新的理论依据。
    Preeclampsia (PE) is a life-threatening pregnancy-specific complication with controversial mechanisms and no effective treatment except delivery is available. Currently, increasing researchers suggested that PE shares pathophysiologic features with protein misfolding/aggregation disorders, such as Alzheimer disease (AD). Evidences have proposed defective autophagy as a potential source of protein aggregation in PE. Endoplasmic reticulum-selective autophagy (ER-phagy) plays a critical role in clearing misfolded proteins and maintaining ER homeostasis. However, its roles in the molecular pathology of PE remain unclear. We found that lncRNA DUXAP8 was upregulated in preeclamptic placentae and significantly correlated with clinical indicators. DUXAP8 specifically binds to PCBP2 and inhibits its ubiquitination-mediated degradation, and decreased levels of PCBP2 reversed the activation effect of DUXAP8 overexpression on AKT/mTOR signaling pathway. Function experiments showed that DUXAP8 overexpression inhibited trophoblastic proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Moreover, pathological accumulation of swollen and lytic ER (endoplasmic reticulum) was observed in DUXAP8-overexpressed HTR8/SVneo cells and PE placental villus trophoblast cells, which suggesting that ER clearance ability is impaired. Further studies found that DUXAP8 overexpression impaired ER-phagy and caused protein aggregation medicated by reduced FAM134B and LC3II expression (key proteins involved in ER-phagy) via activating AKT/mTOR signaling pathway. The increased level of FAM134B significantly reversed the inhibitory effect of DUXAP8 overexpression on the proliferation, migration, and invasion of trophoblasts. In vivo, DUXAP8 overexpression through tail vein injection of adenovirus induced PE-like phenotypes in pregnant rats accompanied with activated AKT/mTOR signaling, decreased expression of FAM134B and LC3-II proteins and increased protein aggregation in placental tissues. Our study reveals the important role of lncRNA DUXAP8 in regulating trophoblast biological behaviors through FAM134B-mediated ER-phagy, providing a new theoretical basis for understanding the pathogenesis of PE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了在极端干燥中生存,种子进入可以持续数千年的静止期。种子静止涉及通过蛋白质稳态(proteostasy)的未知调整来积累保护性储存蛋白和脂质。这里,我们表明,拟南芥中所有六种II型β-半胱天冬酶(MCA-II)蛋白酶的突变会干扰种子中的蛋白质停滞。MCA-II突变体种子无法限制内质网的AAAATP酶细胞周期48(CDC48)丢弃错误折叠的蛋白质,损害种子的可储存性。CDC48的内质网(ER)定位依赖于PUX10(含泛素化调节X结构域10)的MCA-II依赖性切割,负责将CDC48滴定为脂滴的衔接蛋白。PUX10裂解能够使CDC48在脂滴和ER之间穿梭,提供了维持时空蛋白水解的重要调节机制,脂滴动力学,和蛋白质稳态。反过来,MCA-II突变体种子中PUX10衔接子的去除部分恢复了蛋白质稳定,CDC48本地化,和脂滴动力学延长种子寿命。一起来看,我们发现了一个赋予种子寿命的蛋白水解模块。
    To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物的内膜系统由相互连接的膜细胞器组成,这些细胞器有助于细胞内的结构和功能。这些细胞器包括内质网(ER),高尔基体,液泡,跨高尔基网络,和前液泡室或多泡体。通过囊泡介导的转运,分泌的蛋白质在ER中合成,随后沿着分泌途径转运至液泡或细胞外,以实现特定功能。遗传筛选是研究植物蛋白分泌的重要方法。它需要识别基因突变导致的表型差异,如甲磺酸乙酯,T-DNA插入,RNAi,研究基因功能并发现具有特定性状或基因功能的突变体。通过遗传筛选对植物蛋白分泌的研究取得了重大进展。在这个协议中,我们提供了使用基因筛选方法研究蛋白质分泌途径的分步指南.我们使用拟南芥的游离1抑制剂和Marchantiapolymorpha的油体突变体的例子。此外,我们对基因筛选进行了概述,并简要总结了蛋白质分泌研究领域的新兴技术。
    The endomembrane system in plants is composed of interconnected membrane organelles that contribute to intracellular structure and function. These organelles include the endoplasmic reticulum (ER), Golgi apparatus, vacuole, trans-Golgi network, and prevacuolar compartment or multivesicular body. Through vesicle-mediated transport, secreted proteins are synthesized in the ER and subsequently transported along the secretory pathway to the vacuole or outside of cells to fulfill specialized functions. Genetic screening is a crucial method for studying plant protein secretion. It entails identifying phenotypic differences resulting from genetic mutations, such as ethyl methanesulfonate, T-DNA insertion, and RNAi, to investigate gene function and discover mutants with specific traits or gene functions. Significant progress has been achieved in the study of plant protein secretion through genetic screening. In this protocol, we provide a step-by-step guide to studying the protein secretion pathway using a genetic screen approach. We use the example of the free 1 suppressor of Arabidopsis thaliana and oil body mutants of Marchantia polymorpha. Additionally, we offer an overview of genetic screening and briefly summarize the emerging technologies in the field of protein secretion research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    体外重建研究可以对复杂的生化过程进行可控和逐步的研究。在酵母和哺乳动物中,COPII囊泡的体外重建标志着表征内质网至高尔基体顺行运输途径的关键点,并揭示了囊泡如何介导拓扑等效区室之间的选择性和可靠运输。通过在无细胞环境中提供必要的生理条件,它能够解剖囊泡形成所需的基本成分。为了富集和纯化体内少量的膜结合区室,它简化了通过不同的外部刺激或上游信号对囊泡调节的评估。这里,我们描述了用于重建植物COPII囊泡的植物微粒体和细胞质的制备。纯化的囊泡可用于进一步的生物化学或显微镜分析。
    In vitro reconstitution studies enable the controllable and stepwise investigation of complicated biochemical processes. In yeast and mammals, in vitro reconstitution of COPII vesicles marked a pivotal point in characterizing the endoplasmic reticulum-to-Golgi anterograde trafficking route and revealed how vesicles mediate the selective and reliable transportation among topologically equivalent compartments. By providing the necessary physiological conditions in a cell-free environment, it enables the dissection of essential components required for the vesicle formation. To enrich and purify the small amount in vivo membrane-bounded compartments, it simplifies the evaluation of vesicle regulation by distinct external stimuli or upstream signals. Here, we describe the preparation of plant microsomes and cytosol for the reconstitution of plant COPII vesicles. Purified vesicles can be used for further biochemical or microscopical analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号