endoplasmic reticulum

内质网
  • 文章类型: Journal Article
    未折叠蛋白反应(UPR)是一种保守的和适应性的细胞内途径,其通过激活内质网(ER)跨膜应激传感器来缓解内质网(ER)应激。作为ER压力的结果,无义介导的mRNA衰减(NMD)的抑制是由于eIF2α磷酸化的增加,具有抑制翻译的作用。然而,NMD在维持ER稳态中的作用尚不清楚.在这项研究中,我们发现这三个NMD因素,上移码(UPF)1、UPF2或UPF3B,被要求否定普遍定期审议。在这三个NMD因素中,只有UPF3B与需要肌醇的酶1α(IRE1α)相互作用。这种相互作用抑制了IRE1α的激酶活性,取消了自磷酸化,并减少了ER压力的IRE1α聚类。BiP和UPF3B共同控制ER膜两侧IRE1α的活化。在应力条件下,UPF3B的磷酸化增加,并鉴定了磷酸化位点。UPF3B在Thr169的UPF3BY160D基因突变和磷酸化分别消除了其与IRE1α和UPF2的相互作用,导致内质网应激和NMD功能障碍的激活。我们的研究揭示了UPF3B在NMD和ER应激之间的相互调节关系中的关键生理作用。
    The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    KuwanonC是桑树家族中发现的一种独特的类黄酮,特征为两个异戊烯基。虽然以前的研究集中在kuwanonC的各种性质上,如抗氧化剂,低血糖,抗菌,食品保存,皮肤美白,和线虫寿命延长,很少有人关注它在肿瘤疾病中的潜在作用。在这项研究中,我们研究了kuwanonC在宫颈癌细胞中的抗肿瘤作用,并阐明了其具体作用机制。我们使用各种实验技术评估了kuwanonC的抗肿瘤作用,包括细胞增殖试验,伤口愈合试验,EdU488增殖试验,线粒体膜电位测定,ROS水平测定,细胞周期,细胞凋亡分析,以及KuwanonC靶位点和分子对接的研究。结果表明,kuwanonC显著影响HeLa细胞的细胞周期进程,破坏了它们的线粒体膜电位,并诱导细胞内ROS水平的大幅增加。此外,kuwanonC对HeLa细胞表现出明显的抗增殖和促凋亡作用,超越了紫杉醇、顺铂等常用抗肿瘤药物的性能。值得注意的是,与紫杉醇相比,kuwanonC表现出优异的疗效,同时也更容易获得。我们的研究表明,kuwanonC通过与线粒体和内质网膜的相互作用发挥强大的抗肿瘤作用,诱导大量产生ROS,破坏了它们的正常结构,抑制细胞周期进程,并刺激凋亡信号通路,最终导致HeLa肿瘤细胞死亡。作为源自桑属的异戊烯基化合物,kuwanonC有望成为开发有效抗肿瘤药物的潜在候选人。
    Kuwanon C is a unique flavonoid found in the mulberry family, characterized by two isopentenyl groups. While previous research has focused on various properties of kuwanon C, such as antioxidant, hypoglycemic, antimicrobial, food preservation, skin whitening, and nematode lifespan extension, little attention has been given to its potential role in oncological diseases. In this study, we investigate the antitumor effect of kuwanon C in cervical cancer cells and elucidate its specific mechanism of action. We assessed the antitumor effects of kuwanon C using various experimental techniques, including cell proliferation assay, wound healing assays, EdU 488 proliferation assay, mitochondrial membrane potential assay, ROS level assay, cell cycle, apoptosis analysis, and studies on kuwanon C target sites and molecular docking. The results revealed that kuwanon C significantly impacted the cell cycle progression of HeLa cells, disrupted their mitochondrial membrane potential, and induced a substantial increase in intracellular ROS levels. Moreover, kuwanon C exhibited notable anti-proliferative and pro-apoptotic effects on HeLa cells, surpassing the performance of commonly used antitumor drugs such as paclitaxel and cisplatin. Notably, kuwanon C demonstrated superior efficacy while also being more easily accessible compared to paclitaxel. Our study demonstrates that kuwanon C exerts potent antitumor effects by its interaction with the mitochondrial and endoplasmic reticulum membranes, induces a significant production of ROS, disrupts their normal structure, inhibits cell cycle progression, and stimulates apoptotic signaling pathways, ultimately resulting in the death of HeLa tumor cells. As an isopentenyl compound derived from Morus alba, kuwanon C holds great promise as a potential candidate for the development of effective antitumor drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多形性胶质母细胞瘤是人类癌症中最常见和致命的脑肿瘤。神经酰胺(Cer)和1-磷酸鞘氨醇(S1P)已成为生物效应分子,可控制涉及癌症发展和耐药性的几种生物过程。Cer作为肿瘤抑制因子,抑制癌症进展,促进细胞凋亡,增强免疫治疗和细胞对化疗的敏感性。相比之下,S1P作为一种肿瘤启动子分子,不断增加的扩散,生存,侵入性,以及对药物诱导的细胞凋亡的抗性。促存活PI3K/Akt途径是S1P的公认下游靶标,我们先前已经证明,在神经胶质瘤细胞中,它还可以改善神经胶质瘤细胞中Cer向复杂鞘脂的转运和代谢。这里,我们首先研究了这种可能性,在T98G神经胶质瘤细胞中,S1P可能通过PI3K/Akt信号调节Cer代谢。我们的研究表明,外源S1P通过S1P受体介导的PI3K/Akt途径的激活,增加了Cer从内质网(ER)到高尔基体的囊泡运输速率。有趣的是,S1P的作用导致细胞保护免受ER中Cer积累引起的毒性,强调S1P作为存活因子逃避Cer产生细胞死亡反应的作用。
    Glioblastoma multiforme is the most common and fatal brain tumor among human cancers. Ceramide (Cer) and Sphingosine 1-phosphate (S1P) have emerged as bioeffector molecules that control several biological processes involved in both cancer development and resistance. Cer acts as a tumor suppressor, inhibiting cancer progression, promoting apoptosis, enhancing immunotherapy and sensitizing cells to chemotherapy. In contrast, S1P functions as an onco-promoter molecule, increasing proliferation, survival, invasiveness, and resistance to drug-induced apoptosis. The pro-survival PI3K/Akt pathway is a recognized downstream target of S1P, and we have previously demonstrated that in glioma cells it also improves Cer transport and metabolism towards complex sphingolipids in glioma cells. Here, we first examined the possibility that, in T98G glioma cells, S1P may regulate Cer metabolism through PI3K/Akt signaling. Our research showed that exogenous S1P increases the rate of vesicular trafficking of Cer from the endoplasmic reticulum (ER) to the Golgi apparatus through S1P receptor-mediated activation of the PI3K/Akt pathway. Interestingly, the effect of S1P results in cell protection against toxicity arising from Cer accumulation in the ER, highlighting the role of S1P as a survival factor to escape from the Cer-generating cell death response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰高血糖素样肽1(GLP1),它主要从肠道的肠内分泌细胞(EEC)中的胰高血糖素原加工和裂解,作用于胰腺细胞中的GLP1受体以刺激胰岛素分泌和抑制胰高血糖素分泌。然而,GLP1处理没有被完全理解。这里,我们显示网状结构4B(Nogo-B),内质网(ER)驻留蛋白,与胰高血糖素原的主要胰高血糖素原片段相互作用以将胰高血糖素原保留在ER上,从而抑制PCSK1介导的高尔基体中胰高血糖素原的裂解。男性2型糖尿病(T2DM)小鼠的肠道Nogo-B基因敲除会增加GLP1和胰岛素水平,并降低胰高血糖素水平,从而减轻胰腺损伤和胰岛素抵抗。最后,我们发现糖尿病患者EECs中Nogo-B表达异常升高并抑制胰高血糖素原裂解。我们的研究揭示了在GLP1生产过程中涉及Nogo-B的亚细胞调节过程,并表明肠道Nogo-B是T2DM的潜在治疗靶标。
    Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧固醇结合蛋白(OSBP)因其在脂质运输中的关键作用而闻名,促进高尔基体和内质网膜之间的胆固醇交换。尽管它在细胞过程中已经确立了功能,其是否参与冠状病毒复制仍不清楚.
    在这项研究中,我们研究了OSBP在冠状病毒复制中的作用,并探索了一种新型OSBP结合化合物的潜力,ZJ-1,作为抗冠状病毒的抗病毒剂,包括SARS-CoV-2.我们利用生化和细胞测定的组合来阐明OSBP与SARS-CoV-2非结构蛋白(Nsps)和其他病毒蛋白之间的相互作用。
    我们的研究结果表明,OSBP正调节冠状病毒的复制。此外,ZJ-1治疗导致OSBP水平降低,并表现出对多种冠状病毒的有效抗病毒作用.通过我们的调查,我们确定了OSBP和SARS-CoV-2Nsps之间的特定相互作用,特别是Nsp3,Nsp4和Nsp6,它们参与双膜囊泡的形成,这是病毒复制的关键步骤。此外,我们观察到Nsp3a.a.1-1363,Nsp4和Nsp6靶向囊泡相关膜蛋白(VAMP)相关蛋白B(VAP-B),将OSBP固定在ER膜上。有趣的是,OSBP和VAP-B之间的相互作用被Nsp3a.a.1-1363破坏,部分被Nsp6损害。此外,我们确定了SARS-CoV-2或f7a,orf7b,和orf3a作为额外的OSBP目标,OSBP有助于他们的稳定。
    我们的研究强调了OSBP在冠状病毒复制中的重要性,并将其确定为开发针对SARS-CoV-2和其他冠状病毒的抗病毒疗法的有希望的靶标。这些发现强调了针对OSBP的干预措施在对抗冠状病毒感染方面的潜力。
    UNASSIGNED: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear.
    UNASSIGNED: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2. We utilized a combination of biochemical and cellular assays to elucidate the interactions between OSBP and SARS-CoV-2 non-structural proteins (Nsps) and other viral proteins.
    UNASSIGNED: Our findings demonstrate that OSBP positively regulates coronavirus replication. Moreover, treatment with ZJ-1 resulted in reduced OSBP levels and exhibited potent antiviral effects against multiple coronaviruses. Through our investigation, we identified specific interactions between OSBP and SARS-CoV-2 Nsps, particularly Nsp3, Nsp4, and Nsp6, which are involved in double-membrane vesicle formation-a crucial step in viral replication. Additionally, we observed that Nsp3 a.a.1-1363, Nsp4, and Nsp6 target vesicle-associated membrane protein (VAMP)-associated protein B (VAP-B), which anchors OSBP to the ER membrane. Interestingly, the interaction between OSBP and VAP-B is disrupted by Nsp3 a.a.1-1363 and partially impaired by Nsp6. Furthermore, we identified SARS-CoV-2 orf7a, orf7b, and orf3a as additional OSBP targets, with OSBP contributing to their stabilization.
    UNASSIGNED: Our study highlights the significance of OSBP in coronavirus replication and identifies it as a promising target for the development of antiviral therapies against SARS-CoV-2 and other coronaviruses. These findings underscore the potential of OSBP-targeted interventions in combating coronavirus infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了在极端干燥中生存,种子进入可以持续数千年的静止期。种子静止涉及通过蛋白质稳态(proteostasy)的未知调整来积累保护性储存蛋白和脂质。这里,我们表明,拟南芥中所有六种II型β-半胱天冬酶(MCA-II)蛋白酶的突变会干扰种子中的蛋白质停滞。MCA-II突变体种子无法限制内质网的AAAATP酶细胞周期48(CDC48)丢弃错误折叠的蛋白质,损害种子的可储存性。CDC48的内质网(ER)定位依赖于PUX10(含泛素化调节X结构域10)的MCA-II依赖性切割,负责将CDC48滴定为脂滴的衔接蛋白。PUX10裂解能够使CDC48在脂滴和ER之间穿梭,提供了维持时空蛋白水解的重要调节机制,脂滴动力学,和蛋白质稳态。反过来,MCA-II突变体种子中PUX10衔接子的去除部分恢复了蛋白质稳定,CDC48本地化,和脂滴动力学延长种子寿命。一起来看,我们发现了一个赋予种子寿命的蛋白水解模块。
    To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多脂质在细胞器之间异质分布。细胞器之间的大多数脂质运输是通过一组脂质转移蛋白(LTP)实现的,这些脂质转移蛋白使用其疏水性腔携带脂质。人类基因组编码许多负责脂质运输的细胞内LTP,并且许多LTP在定义细胞脂质水平和分布方面的功能尚不清楚。这里,我们创建了一个靶向90个细胞内LTPs的基因敲除文库,并进行了全细胞脂质组学分析.该分析证实了已知的脂质紊乱,并确定了由LTP损失引起的新的脂质紊乱。其中,我们在ORP9和ORP11基因敲除细胞中发现了主要的鞘脂失衡,在鞘脂代谢中具有未知功能的两种蛋白质。ORP9和ORP11形成异二聚体,定位在ER-反式高尔基体膜接触位点,其中二聚体在两个细胞器之间将磷脂酰丝氨酸(PS)交换为磷脂酰肌醇-4-磷酸(PI(4)P)。因此,任何一种蛋白质的丢失都会导致高尔基体中的磷脂失衡,从而导致该细胞器的鞘磷脂合成降低。总的来说,我们的LTP敲除库工具箱识别了控制细胞脂质水平的各种蛋白质,包括ORP9-ORP11异二聚体,它在ER-高尔基体膜接触位点交换PS和PI(4)P,这是高尔基体中鞘磷脂合成的关键步骤。
    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不利条件,如长期干旱和高盐度,对植物的生存和农业产量构成威胁。植物激素ABA在植物胁迫适应的调节中起着关键作用,并且通常长时间维持在高水平。虽然人们对早期信号传导阶段的ABA信号感知和激活了解很多,ABA信号脱敏的分子机制仍然未知。在这里,我们证明在内质网(ER)-高尔基网络中,ABA信号的关键调节剂,SnRK2.2/2.3,进行N-糖基化,促进它们从拟南芥根中的核重新分布到过氧化物酶体,并在延长的ABA信号传导过程中影响核中的转录反应。在过氧化物酶体膜上,SnRK2s可以与葡萄糖-6-磷酸(G6P)/磷酸盐转运蛋白1(GPT1)相互作用,通过增加过氧化物酶体氧化戊糖磷酸途径(OPPP)的活性来维持NADPH稳态。所产生的NADPH的维持对于过氧化氢(H2O2)积累的调制至关重要,从而减轻ABA诱导的根生长抑制。SnRK2s的亚细胞动力学,由N-糖基化介导,表明ABA反应从细胞核中的转录调节过渡到过氧化物酶体中的代谢过程,帮助植物适应长期的环境压力。
    Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ire1的复杂多步活化级联涉及Ire1构象和寡聚状态的变化。Ire1激活增强了ER折叠能力,部分是通过过表达ERHsp70分子伴侣BiP;反过来,BiP提供Ire1激活的严格阴性对照。该研究证明BiP通过与Ire1寡聚体的直接相互作用调节Ire1活化。特别是,我们证明了Ire1腔结构域(LD)与未折叠的蛋白质底物的结合不仅触发了Ire1-LD中有利于Ire1-LD寡聚体形成的构象变化,而且还暴露了BiP结合基序,使分子伴侣BiP能够以ATP依赖性方式直接结合Ire1-LD。BiP与Ire1-LD无序区域中的两个短基序之间的这些瞬时相互作用让人想起网格蛋白与另一个Hsp70,细胞质Hsc70之间的相互作用。BiP与底物结合的Ire1-LD寡聚物的结合使得未折叠的蛋白质底物和BiP能够协同地和动态地控制Ire1-LD寡聚化,当不再需要ER应激反应时,帮助Ire1恢复到停用状态。
    The complex multistep activation cascade of Ire1 involves changes in the Ire1 conformation and oligomeric state. Ire1 activation enhances ER folding capacity, in part by overexpressing the ER Hsp70 molecular chaperone BiP; in turn, BiP provides tight negative control of Ire1 activation. This study demonstrates that BiP regulates Ire1 activation through a direct interaction with Ire1 oligomers. Particularly, we demonstrated that the binding of Ire1 luminal domain (LD) to unfolded protein substrates not only trigger conformational changes in Ire1-LD that favour the formation of Ire1-LD oligomers but also exposes BiP binding motifs, enabling the molecular chaperone BiP to directly bind to Ire1-LD in an ATP-dependent manner. These transient interactions between BiP and two short motifs in the disordered region of Ire1-LD are reminiscent of interactions between clathrin and another Hsp70, cytoplasmic Hsc70. BiP binding to substrate-bound Ire1-LD oligomers enables unfolded protein substrates and BiP to synergistically and dynamically control Ire1-LD oligomerisation, helping to return Ire1 to its deactivated state when an ER stress response is no longer required.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,对肿瘤内脂质代谢异常的研究已成为一个新兴的研究领域,引起了广泛的关注。脂质可以作为高能燃料的有效来源,以支持肿瘤的快速生长。其中ER-线粒体膜结构域(ERMMDs)提供了促进ER和线粒体之间的交流以及它们的膜间空间和辅助蛋白的相互作用网络。在这次审查中,我们讨论脂肪酸(FAs)合成代谢和分解代谢,以及ERMMD上的CPT1A-VDAC-ACSL集群如何参与FA传输,主要关注ERMMD介导的粮农组织协作循环,Ca2+在TCA轮回和OXPHOS进程中的传输。这里,我们提出了通过ERMMD进行的肿瘤生理学调节异常脂质代谢的全面观点,这可能是肿瘤饥饿治疗的有希望和潜在的靶标。
    The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号