Systems neuroscience

系统神经科学
  • 文章类型: Journal Article
    在水下作业中,保持认知完整性至关重要,这可能会严重影响工作绩效,并有严重事故的风险。然而,水下作业的认知效果及其潜在机制仍然难以捉摸,对相关专业人员的医疗保护构成了巨大挑战。这里,我们发现,在时间依赖模型中,单个水下操作会话会影响认知。长期暴露会导致明显的认知障碍和海马功能障碍,伴有神经炎症增加。此外,RNA测序(RNA-seq)分析揭示了神经炎症的参与,并强调了CCR3的关键作用。CCR3基因敲除可显著挽救认知功能损害和海马功能障碍,逆转促炎细胞因子的上调,通过将活化的小胶质细胞从促炎表型转换为神经保护表型。一起来看,这些结果强调了单次水下手术对认知功能的时间依赖性影响.敲除CCR3可以通过调节活化小胶质细胞的极化来减轻神经炎症,从而减轻长期水下作业引起的认知障碍。
    Maintaining cognitive integrity is crucial during underwater operations, which can significantly impact work performance and risk severe accidents. However, the cognitive effects of underwater operations and their underlying mechanism remain elusive, posing great challenges to the medical protection of professionals concerned. Here, we found that a single underwater operation session affects cognition in a time-dependent model. Prolonged exposure elicits significant cognitive impairment and hippocampal dysfunction, accompanied by increased neuroinflammation. Furthermore, RNA sequencing (RNA-seq) analysis revealed the involvement of neuroinflammation and highlighted the critical role of CCR3. Knockdown of CCR3 significantly rescued cognitive impairment and hippocampal dysfunction and reversed the upregulation of pro-inflammatory cytokines, by switching the activated microglia from a pro-inflammatory to a neuroprotective phenotype. Taken together, these results highlighted the time-dependent effects of a single underwater operation session on cognitive function. Knocking down CCR3 can attenuate neuroinflammation by regulating polarization of activated microglia, thereby alleviating prolonged underwater operations-induced cognitive impairment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    表征精神病理学的网络方法不同于传统的潜在分类和维度方法。症状之间的因果相互作用有助于动态精神病理学系统。因此,分析症状群对于理解精神障碍至关重要。此外,尽管大量研究了症状网络的拓扑特征,症状之间的控制关系仍不清楚.这里,我们提出了一个新颖的系统化概念,模块控制,从模块层面分析症状网络的控制原理。我们引入了模块控制网络(MCN)来识别调节网络行为的关键模块。通过将我们的方法应用于多变量心理数据集,我们发现非情感模块,如睡眠相关和压力相关模块,是症状网络中的主要控制模块。我们的发现表明,模块控制可以暴露支配精神病理学网络的中心症状群,提供对精神障碍的潜在机制和个性化心理干预方法的新见解。
    The network approach to characterizing psychopathology departs from traditional latent categorical and dimensional approaches. Causal interplay among symptoms contributed to dynamic psychopathology system. Therefore, analyzing the symptom clusters is critical for understanding mental disorders. Furthermore, despite extensive research studying the topological features of symptom networks, the control relationships between symptoms remain largely unclear. Here, we present a novel systematizing concept, module control, to analyze the control principle of the symptom network at a module level. We introduce Module Control Network (MCN) to identify key modules that regulate the network\'s behavior. By applying our approach to a multivariate psychological dataset, we discover that non-emotional modules, such as sleep-related and stress-related modules, are the primary controlling modules in the symptom network. Our findings indicate that module control can expose central symptom cluster governing psychopathology network, offering novel insights into the underlying mechanisms of mental disorders and individualized approach to psychological interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内侧内嗅皮层(MEC)对于上下文记忆至关重要,然而,它在上下文诱导的吗啡戒断记忆检索中的作用仍不清楚。这项研究调查了MEC及其从MEC层5到基底外侧杏仁核(BLA)的投射神经元(MEC-BLA神经元)在上下文诱导的吗啡戒断记忆检索中的作用。结果表明,上下文激活了吗啡戒断小鼠的MEC,MEC的失活抑制了上下文诱导的吗啡戒断记忆的恢复。在神经回路中,上下文激活吗啡戒断小鼠的MEC-BLA神经元,MEC-BLA神经元的失活抑制了上下文诱导的吗啡戒断记忆的恢复。但是MEC-BLA神经元不会被环境条件和吗啡戒断激活,MEC-BLA神经元的抑制不影响上下文和吗啡戒断记忆的耦合。这些结果表明,MEC-BLA神经元对于检索至关重要,但不是为了编队,吗啡戒断记忆.
    The medial entorhinal cortex (MEC) is crucial for contextual memory, yet its role in context-induced retrieval of morphine withdrawal memory remains unclear. This study investigated the role of the MEC and its projection neurons from MEC layer 5 to the basolateral amygdala (BLA) (MEC-BLA neurons) in context-induced retrieval of morphine withdrawal memory. Results show that context activates the MEC in morphine withdrawal mice, and the inactivation of the MEC inhibits context-induced retrieval of morphine withdrawal memory. At neural circuits, context activates MEC-BLA neurons in morphine withdrawal mice, and the inactivation of MEC-BLA neurons inhibits context-induced retrieval of morphine withdrawal memory. But MEC-BLA neurons are not activated by conditioning of context and morphine withdrawal, and the inhibition of MEC-BLA neurons do not influence the coupling of context and morphine withdrawal memory. These results suggest that MEC-BLA neurons are critical for the retrieval, but not for the formation, of morphine withdrawal memory.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多临床研究表明,帕金森病(PD)患者外周血T细胞显著减少。目前还没有关于这一重要观察的机械解释。这里,我们发现,来自体外和体内PD模型的小细胞外囊泡(sEV)抑制了纯化的CD4+和CD8+T细胞产生IL-4和INF-γ,并抑制了它们的活化和增殖.此外,从A53T-syn小鼠的血浆和携带A53T-syn突变的人多巴胺能神经元的培养基中分离的神经元富集的sEV(NEEV)也抑制了幼稚CD4T细胞的Th1和Th2分化。机械上,NEEV诱导的抑制表型与T细胞中程序性死亡配体1(PD-L1)水平的改变相关.用抗PD-L1抗体或小分子抑制剂BMS-1166阻断PD-L1可逆转T细胞抑制。我们的研究为探索外周T细胞在PD发病机制中的作用以及作为该疾病的生物标志物或治疗靶标提供了基础。
    Many clinical studies indicate a significant decrease of peripheral T cells in Parkinson\'s disease (PD). There is currently no mechanistic explanation for this important observation. Here, we found that small extracellular vesicles (sEVs) derived from in vitro and in vivo PD models suppressed IL-4 and INF-γ production from both purified CD4+ and CD8+ T cells and inhibited their activation and proliferation. Furthermore, neuronal-enriched sEVs (NEEVs) isolated from plasma of A53T-syn mice and culture media of human dopaminergic neurons carrying A53T-syn mutation also suppressed Th1 and Th2 differentiation of naive CD4+ T cells. Mechanistically, the suppressed phenotype induced by NEEVs was associated with altered programmed death ligand 1 (PD-L1) level in T cells. Blocking PD-L1 with an anti-PD-L1 antibody or a small molecule inhibitor BMS-1166 reversed T cell suppression. Our study provides the basis for exploring peripheral T cells in PD pathogenesis and as biomarkers or therapeutic targets for the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    关键时期的可塑性对于皮质神经元的功能成熟很重要。虽然皮质层的可塑性特征不同,目前尚不清楚关键时段的时机是否受其中共同或独特的分子机制控制。我们在这里阐明了初级视觉皮层中眼优势可塑性的关键时期的层特异性调节。缺乏内源性大麻素合成酶二酰甘油脂肪酶-α的小鼠表现出早熟的关键时期,2/3和4层中抑制性突触功能的较早成熟,并且仅在2/3层中损害了定向选择性的双眼匹配的发展。大麻素受体的激活在第2/3层的正常关键时期恢复了眼优势可塑性。抑制GABAA受体挽救了第4层早熟的眼优势可塑性。因此,内源性大麻素部分通过以层依赖的方式发展抑制性突触功能来调节视功能的关键时期和成熟。
    Plasticity during the critical period is important for the functional maturation of cortical neurons. While characteristics of plasticity are diverse among cortical layers, it is unknown whether critical period timing is controlled by a common or unique molecular mechanism among them. We here clarified layer-specific regulation of the critical period timing of ocular dominance plasticity in the primary visual cortex. Mice lacking the endocannabinoid synthesis enzyme diacylglycerol lipase-α exhibited precocious critical period timing, earlier maturation of inhibitory synaptic function in layers 2/3 and 4, and impaired development of the binocular matching of orientation selectivity exclusively in layer 2/3. Activation of cannabinoid receptor restored ocular dominance plasticity at the normal critical period in layer 2/3. Suppression of GABAA receptor rescued precocious ocular dominance plasticity in layer 4. Therefore, endocannabinoids regulate critical period timing and maturation of visual function partly through the development of inhibitory synaptic functions in a layer-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缺血性中风会导致脑电波去极化,称为梗死周围去极化(PID)。这里,我们评估了托吡酯,一种用于治疗癫痫和缓解偏头痛的神经保护药物,有可能降低PID。我们采用了一种可以可靠且可重复地诱导PID的光血栓性缺血大鼠模型,并开发了一种联合的脑电图-激光散斑对比成像(ECoG-LSCI)平台,以同时监测神经元活动和脑血流量(CBF)。光血栓性缺血后施用托吡酯不能挽救CBF,但显着恢复了原发性体感皮层前肢区域的体感诱发电位。此外,通过氯化2,3,5-三苯基四唑(TTC)染色研究梗死体积,通过Nissl染色评估神经元存活。机械上,炎症标志物的水平,如ED1(CD68),Iba-1和GFAP,服用托吡酯后显著下降,BDNF表达也是如此,而NeuN和Bcl-2/Bax的表达增加,这表明炎症减少和神经保护改善。
    Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元合奏对于情景记忆和空间映射至关重要。Sleep,特别是非快速眼动(NREM),对记忆巩固至关重要,因为它通过大脑振荡触发可塑性机制,从而重新激活神经元集合。这里,我们评估了它们在睡眠期间巩固海马空间表征中的作用.我们记录了执行空间对象位置识别(OPR)记忆任务的大鼠的海马活动,在编码和检索期间,通过干预睡眠分开。成功的OPR检索与NREM持续时间相关,在此期间,皮质振荡的功率和密度以及神经元尖峰下降,表明网络兴奋性的全球下调。然而,编码特定空间位置的神经元(即,与非编码神经元相比,OPR期间的位置细胞)或对象与大脑振荡表现出更强的同步性,空间表示的稳定性与NREM持续时间成比例下降。我们的研究结果表明,NREM睡眠可能会促进海马集合的灵活重定位,可能有助于记忆巩固和适应新的空间环境。
    Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    系统神经科学正面临着越来越多的数据。蛋白质工程和显微镜的最新进展共同导致了神经科学的范式转变;使用荧光,我们现在可以通过行为动物的整个大脑来成像每个神经元的活动。即使在更大的生物中,我们可以同时记录的神经元数量随着时间呈指数增长。数据维数的这种增加正在遇到计算和数学方法的爆炸式增长,每个都使用不同的术语,不同的方法,和不同的数学概念。在这里,我们收集,组织,并解释了多种数据分析技术,或者可能是,应用于全脑成像,以幼体斑马鱼为例模型。我们从线性回归等方法开始,这些方法旨在检测两个变量之间的关系。接下来,我们通过网络科学和应用拓扑方法进步,它们专注于许多变量之间的关系模式。最后,我们强调了生成模型的潜力,这些模型可以提供关于布线规则和网络随时间进展的可测试假设,或疾病进展。虽然我们使用幼体斑马鱼成像的例子,这些方法适用于任何人口规模的神经网络建模,事实上,超越系统神经科学的应用。来自网络科学和应用拓扑的计算方法不仅限于幼体斑马鱼,甚至是系统神经科学,因此,我们最后讨论了如何将这些方法应用于整个生物科学的各种问题。
    Systems neuroscience is facing an ever-growing mountain of data. Recent advances in protein engineering and microscopy have together led to a paradigm shift in neuroscience; using fluorescence, we can now image the activity of every neuron through the whole brain of behaving animals. Even in larger organisms, the number of neurons that we can record simultaneously is increasing exponentially with time. This increase in the dimensionality of the data is being met with an explosion of computational and mathematical methods, each using disparate terminology, distinct approaches, and diverse mathematical concepts. Here we collect, organize, and explain multiple data analysis techniques that have been, or could be, applied to whole-brain imaging, using larval zebrafish as an example model. We begin with methods such as linear regression that are designed to detect relations between two variables. Next, we progress through network science and applied topological methods, which focus on the patterns of relations among many variables. Finally, we highlight the potential of generative models that could provide testable hypotheses on wiring rules and network progression through time, or disease progression. While we use examples of imaging from larval zebrafish, these approaches are suitable for any population-scale neural network modeling, and indeed, to applications beyond systems neuroscience. Computational approaches from network science and applied topology are not limited to larval zebrafish, or even to systems neuroscience, and we therefore conclude with a discussion of how such methods can be applied to diverse problems across the biological sciences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们对生殖健康和不育等相关疾病的理解和管理,月经不调,和垂体疾病取决于了解控制催乳素分泌的复杂的性别特异性机制。在急性切片中使用离体实验,与体内钙成像(GRIN透镜技术)并行,我们发现多巴胺神经元抑制PRL分泌(TIDA),在体内和体外组织为功能网络。我们使用钙事件的持续时间和形成塑料经济网络的能力来定义网络效率指数(Ieff)。它确定了TIDA神经元在体内抑制PRL分泌的能力。两性的差异证明了TIDA神经元对生理变化的适应性。有助于网络的活跃神经元数量的变化解释了基础[PRL]血液分泌模式中的性二态性。神经元活动和网络组织的这些性别特异性差异有助于理解激素调节。
    Our understanding and management of reproductive health and related disorders such as infertility, menstrual irregularities, and pituitary disorders depend on understanding the intricate sex-specific mechanisms governing prolactin secretion. Using ex vivo experiments in acute slices, in parallel with in vivo calcium imaging (GRIN lens technology), we found that dopamine neurons inhibiting PRL secretion (TIDA), organize as functional networks both in and ex vivo. We defined an index of efficiency of networking (Ieff) using the duration of calcium events and the ability to form plastic economic networks. It determined TIDA neurons\' ability to inhibit PRL secretion in vivo. Ieff variations in both sexes demonstrated TIDA neurons\' adaptability to physiological changes. A variation in the number of active neurons contributing to the network explains the sexual dimorphism in basal [PRL]blood secretion patterns. These sex-specific differences in neuronal activity and network organization contribute to the understanding of hormone regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号