Synthetic Lethal Mutations

合成致死突变
  • 文章类型: Journal Article
    背景:泛素连接酶MDM2的高表达是许多肿瘤中p53失活的主要原因,使其成为有希望的治疗目标。然而,由于p53诱导的增强MDM2表达的反馈,MDM2抑制剂在临床试验中失败。这强调了迫切需要找到有效的适应性基因型或靶标组合。
    方法:使用TP53野生型癌细胞进行全KinomeCRISPR/Cas9敲除筛选以鉴定调节对MDM2抑制剂的反应的基因,并发现ULK1作为候选物。MTT细胞活力测定,进行流式细胞术和LDH测定以评估焦亡的激活以及将ULK1耗竭与p53激活相结合的合成致死效应。进行双荧光素酶报告基因测定和ChIP-qPCR以确认p53直接介导GSDME的转录并鉴定GSDME启动子中p53的结合区。构建ULK1敲除/过表达细胞以研究ULK1在体外和体内的功能作用。主要通过qPCR研究ULK1消耗激活GSMDE的机制,蛋白质印迹和ELISA。
    结果:通过高通量筛选,我们确定ULK1是MDM2抑制剂APG115的合成致死基因.确定ULK1的缺失显着增加了灵敏度,细胞经历典型的焦亡。机械上,p53通过直接介导诱导基础水平焦亡的GSDME转录来促进焦亡起始。此外,ULK1耗竭减少线粒体自噬,导致受损线粒体的积累和随后活性氧(ROS)的增加。这进而通过NLRP3-Caspase炎性信号传导轴切割并激活GSDME。分子级联使ULK1充当p53激活细胞介导的焦亡启动的关键调节因子。此外,在铂耐药肿瘤中线粒体自噬增强,ULK1耗竭/p53激活对这些肿瘤有协同致死作用,直接通过GSDME诱导焦亡。
    结论:我们的研究表明,ULK1缺乏可与MDM2抑制剂协同诱导焦亡。p53在激活GSDME转录中起直接作用,而ULK1缺乏引发ROS-NLRP3信号通路上调,导致GSDME裂解和激活。这些发现强调了p53在决定焦亡中的关键作用,并为p53恢复疗法的临床应用提供了新的途径。以及提出潜在的组合策略。
    BACKGROUND: High expression of ubiquitin ligase MDM2 is a primary cause of p53 inactivation in many tumors, making it a promising therapeutic target. However, MDM2 inhibitors have failed in clinical trials due to p53-induced feedback that enhances MDM2 expression. This underscores the urgent need to find an effective adaptive genotype or combination of targets.
    METHODS: Kinome-wide CRISPR/Cas9 knockout screen was performed to identify genes that modulate the response to MDM2 inhibitor using TP53 wild type cancer cells and found ULK1 as a candidate. The MTT cell viability assay, flow cytometry and LDH assay were conducted to evaluate the activation of pyroptosis and the synthetic lethality effects of combining ULK1 depletion with p53 activation. Dual-luciferase reporter assay and ChIP-qPCR were performed to confirm that p53 directly mediates the transcription of GSDME and to identify the binding region of p53 in the promoter of GSDME. ULK1 knockout / overexpression cells were constructed to investigate the functional role of ULK1 both in vitro and in vivo. The mechanism of ULK1 depletion to activate GSMDE was mainly investigated by qPCR, western blot and ELISA.
    RESULTS: By using high-throughput screening, we identified ULK1 as a synthetic lethal gene for the MDM2 inhibitor APG115. It was determined that deletion of ULK1 significantly increased the sensitivity, with cells undergoing typical pyroptosis. Mechanistically, p53 promote pyroptosis initiation by directly mediating GSDME transcription that induce basal-level pyroptosis. Moreover, ULK1 depletion reduces mitophagy, resulting in the accumulation of damaged mitochondria and subsequent increasing of reactive oxygen species (ROS). This in turn cleaves and activates GSDME via the NLRP3-Caspase inflammatory signaling axis. The molecular cascade makes ULK1 act as a crucial regulator of pyroptosis initiation mediated by p53 activation cells. Besides, mitophagy is enhanced in platinum-resistant tumors, and ULK1 depletion/p53 activation has a synergistic lethal effect on these tumors, inducing pyroptosis through GSDME directly.
    CONCLUSIONS: Our research demonstrates that ULK1 deficiency can synergize with MDM2 inhibitors to induce pyroptosis. p53 plays a direct role in activating GSDME transcription, while ULK1 deficiency triggers upregulation of the ROS-NLRP3 signaling pathway, leading to GSDME cleavage and activation. These findings underscore the pivotal role of p53 in determining pyroptosis and provide new avenues for the clinical application of p53 restoration therapies, as well as suggesting potential combination strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成致死性(SL)已显示出在癌症中发现新靶标的巨大前景。CRISPR双敲除(CDKO)技术只能筛选数百个基因及其组合,但不是全基因组的。因此,在CDKO实验中,基因和基因对的选择非常需要良好的SL预测模型。然而,缺乏可扩展的SL属性会阻止SL交互对样本外数据的泛化,从而阻碍了建模工作。在本文中,我们认识到SL连通性是一种可扩展和可推广的SL属性。我们开发了一种新颖的两步多层编码器,用于单个样本特定的SL预测模型(MLEC-iSL),它首先预测SL连通性,然后预测SL交互。MLEC-iSL有三个编码器,即,基因,graph,和变压器编码器。MLEC-iSL在K562中实现了高SL预测性能(AUPR,0.73;AUC,0.72)和Jurkat(AUPR,0.73;AUC,0.71)细胞,而现有的方法没有超过0.62AUPR和AUC。在22Rv1细胞的CDKO实验中验证了MLEC-iSL的预测性能,在987个选定的基因对中产生46.8%的SL率。该筛选还揭示了凋亡和有丝分裂细胞死亡途径之间的SL依赖性。
    Synthetic lethality (SL) has shown great promise for the discovery of novel targets in cancer. CRISPR double-knockout (CDKO) technologies can only screen several hundred genes and their combinations, but not genome-wide. Therefore, good SL prediction models are highly needed for genes and gene pairs selection in CDKO experiments. However, lack of scalable SL properties prevents generalizability of SL interactions to out-of-sample data, thereby hindering modeling efforts. In this paper, we recognize that SL connectivity is a scalable and generalizable SL property. We develop a novel two-step multilayer encoder for individual sample-specific SL prediction model (MLEC-iSL), which predicts SL connectivity first and SL interactions subsequently. MLEC-iSL has three encoders, namely, gene, graph, and transformer encoders. MLEC-iSL achieves high SL prediction performance in K562 (AUPR, 0.73; AUC, 0.72) and Jurkat (AUPR, 0.73; AUC, 0.71) cells, while no existing methods exceed 0.62 AUPR and AUC. The prediction performance of MLEC-iSL is validated in a CDKO experiment in 22Rv1 cells, yielding a 46.8% SL rate among 987 selected gene pairs. The screen also reveals SL dependency between apoptosis and mitosis cell death pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:致病性BRCA1或BRCA2种系突变有助于遗传性乳腺,卵巢,前列腺,还有胰腺癌.矛盾的是,BRCA1或BRCA2(bBRCA1/2)的双等位基因失活是胚胎致死性的并降低细胞增殖。促进bBRCA1/2肿瘤发生的代偿机制尚不清楚。
    方法:我们确定了富含人bBRCA1/2肿瘤的复发性遗传改变,并通过实验验证了这些改变是否在细胞模型中改善了增殖。我们分析了来自TCGA和ICGC的bBRCA1/2乳腺癌和卵巢癌中的突变和拷贝数改变(CNA)。与缺乏同源重组缺陷证据的对照肿瘤相比,我们使用Fisher精确检验来鉴定富含bBRCA1/2肿瘤的CNA。在全基因组CRISPR/Cas9筛选中,通过基因表达及其对增殖的影响进一步筛选位于富含bBRCA1/2肿瘤的CNA区域的基因。通过体外克隆形成存活和功能测定对一组候选基因进行了功能验证,以验证它们在bBRCA1/2突变情况下对增殖的影响。
    结果:我们发现bBRCA1/2肿瘤的复发性大规模基因组缺失明显高于组织学匹配的对照(n=238个乳腺癌和卵巢癌的细胞带)。在删除的区域内,在全基因组CRISPR筛选中,我们鉴定出277个BRCA1相关基因和218个BRCA2相关基因在bBRCA1/2中表达减少,增殖增加,但在野生型细胞中则没有.通过克隆增殖实验对20个候选基因进行体外验证,验证了9个基因,包括RIC8A和ATMIN(ATM相互作用蛋白)。我们确定了RIC8A的损失,在bBRCA1/2肿瘤中经常发生,并且在BRCA1和BRCA2都丢失的情况下是合成可行的。此外,我们发现转移性同源重组缺陷型癌症在RIC8A中获得功能缺失突变.最后,我们发现RIC8A不能挽救同源重组缺陷,但可能会影响bBRCA1/2肿瘤的有丝分裂,可能导致微核形成增加。
    结论:这项研究提供了一种方法来解决肿瘤抑制悖论,方法是确定人类癌症中受到大规模CNAs影响的合成生存力相互作用和因果驱动基因。
    BACKGROUND: Pathogenic BRCA1 or BRCA2 germline mutations contribute to hereditary breast, ovarian, prostate, and pancreatic cancer. Paradoxically, bi-allelic inactivation of BRCA1 or BRCA2 (bBRCA1/2) is embryonically lethal and decreases cellular proliferation. The compensatory mechanisms that facilitate oncogenesis in bBRCA1/2 tumors remain unclear.
    METHODS: We identified recurrent genetic alterations enriched in human bBRCA1/2 tumors and experimentally validated if these improved proliferation in cellular models. We analyzed mutations and copy number alterations (CNAs) in bBRCA1/2 breast and ovarian cancer from the TCGA and ICGC. We used Fisher\'s exact test to identify CNAs enriched in bBRCA1/2 tumors compared to control tumors that lacked evidence of homologous recombination deficiency. Genes located in CNA regions enriched in bBRCA1/2 tumors were further screened by gene expression and their effects on proliferation in genome-wide CRISPR/Cas9 screens. A set of candidate genes was functionally validated with in vitro clonogenic survival and functional assays to validate their influence on proliferation in the setting of bBRCA1/2 mutations.
    RESULTS: We found that bBRCA1/2 tumors harbor recurrent large-scale genomic deletions significantly more frequently than histologically matched controls (n = 238 cytobands in breast and ovarian cancers). Within the deleted regions, we identified 277 BRCA1-related genes and 218 BRCA2-related genes that had reduced expression and increased proliferation in bBRCA1/2 but not in wild-type cells in genome-wide CRISPR screens. In vitro validation of 20 candidate genes with clonogenic proliferation assays validated 9 genes, including RIC8A and ATMIN (ATM-Interacting protein). We identified loss of RIC8A, which occurs frequently in both bBRCA1/2 tumors and is synthetically viable with loss of both BRCA1 and BRCA2. Furthermore, we found that metastatic homologous recombination deficient cancers acquire loss-of-function mutations in RIC8A. Lastly, we identified that RIC8A does not rescue homologous recombination deficiency but may influence mitosis in bBRCA1/2 tumors, potentially leading to increased micronuclei formation.
    CONCLUSIONS: This study provides a means to solve the tumor suppressor paradox by identifying synthetic viability interactions and causal driver genes affected by large-scale CNAs in human cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合成致死性(SL)和合成活力(SV)是癌症靶向治疗方法中通常研究的遗传相互作用。在SL中,抑制任何一种基因都不会影响癌细胞的存活,但是抑制这两者都会导致致命的表型。在SV中,抑制脆弱的基因使癌细胞生病;抑制伴侣基因拯救和促进细胞活力。许多低和高通量的实验方法已经被用来识别SL和SV,但是它们既耗时又昂贵。SL预测的计算工具涉及统计和机器学习方法。几乎所有的机器学习工具都是二进制分类器,只涉及识别SL对。最重要的是,已知有有限的属性可以最好地描述和区分SL和SV。我们开发了MAGICAL(通过算法学习在癌症中遗传相互作用的多类方法),基于多类随机森林的遗传相互作用预测机器学习模型。源自物理蛋白质-蛋白质相互作用的蛋白质的网络特性被用作对SL和SV进行分类的特征。该模型对训练数据集(CGIdb,BioGRID,和SynLethDB),并在DepMap和其他实验得出的报告数据集上表现良好。在所有网络属性中,最短路径,平均邻域2,平均介数,平均三角形,和附着力具有显著的鉴别力。MAGICAL是第一个识别合成致命和可行相互作用的歧视性特征的多类模型。MAGICAL可以比任何现有的二元分类器具有更好的准确性和精确度来预测SL和SV的相互作用。
    Synthetic lethality (SL) and synthetic viability (SV) are commonly studied genetic interactions in the targeted therapy approach in cancer. In SL, inhibiting either of the genes does not affect the cancer cell survival, but inhibiting both leads to a lethal phenotype. In SV, inhibiting the vulnerable gene makes the cancer cell sick; inhibiting the partner gene rescues and promotes cell viability. Many low and high-throughput experimental approaches have been employed to identify SLs and SVs, but they are time-consuming and expensive. The computational tools for SL prediction involve statistical and machine-learning approaches. Almost all machine learning tools are binary classifiers and involve only identifying SL pairs. Most importantly, there are limited properties known that best describe and discriminate SL from SV. We developed MAGICAL (Multi-class Approach for Genetic Interaction in Cancer via Algorithm Learning), a multi-class random forest based machine learning model for genetic interaction prediction. Network properties of protein derived from physical protein-protein interactions are used as features to classify SL and SV. The model results in an accuracy of ~80% for the training dataset (CGIdb, BioGRID, and SynLethDB) and performs well on DepMap and other experimentally derived reported datasets. Amongst all the network properties, the shortest path, average neighbor2, average betweenness, average triangle, and adhesion have significant discriminatory power. MAGICAL is the first multi-class model to identify discriminatory features of synthetic lethal and viable interactions. MAGICAL can predict SL and SV interactions with better accuracy and precision than any existing binary classifier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    1型神经纤维瘤病,一种由NF1种系突变引起的遗传性疾病,使患者容易发生肿瘤,包括皮肤和丛状神经纤维瘤(CNs和PNs),视神经胶质瘤,星形细胞瘤,幼年型粒单核细胞白血病,高级别神经胶质瘤,和恶性周围神经鞘瘤(MPNSTs),这是化疗和辐射抗性肉瘤,生存率低。NF1的丢失也发生在散发性肿瘤,如胶质母细胞瘤(GBM),黑色素瘤,乳房,卵巢,和肺癌。我们对合成致死性NF1损失的化合物进行了高通量筛选,确定了几条线索,包括小分子Y102。用Y102扰动自噬处理细胞,线粒体自噬,和溶酶体在NF1缺陷细胞中的定位。双重蛋白质组学方法鉴定了BORC复合物,这是溶酶体定位和贩运所必需的,作为Y102的潜在目标。使用siRNA的BORC复合物亚基的敲低概括了用Y102处理观察到的表型。我们的发现表明,BORC复合物可能是NF1缺陷型肿瘤的有希望的治疗靶标。
    Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症依赖性图加速了肿瘤弱点的发现,当可以转化为患者时,这些弱点可以被用作药物靶标。癌症基因组图谱(TCGA)是详细说明遗传的“图谱”汇编,在癌症发病过程中发生的表观遗传和分子变化,然而,它缺乏一个依赖图谱来翻译患者肿瘤的基因本质。这里,我们使用机器学习来构建患者肿瘤的平移依赖图,确定了预测药物反应和疾病结果的肿瘤脆弱性。使用类似的方法来映射健康组织中的基因耐受性,以利用最佳治疗窗口来优先考虑肿瘤易损性。实验测试了一部分患者可翻译的合成致死率,包括PAPSS1/PAPSS12和CNOT7/CNOT78,在体外和体内进行了验证。值得注意的是,PAPSS1合成致死率是由PTEN附带删除PAPSS2驱动的,并与患者生存率相关。最后,平移依赖关系图作为基于Web的应用程序提供,用于探索肿瘤漏洞。
    Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of \'maps\' detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes. A similar approach was used to map gene tolerability in healthy tissues to prioritize tumor vulnerabilities with the best therapeutic windows. A subset of patient-translatable synthetic lethalities were experimentally tested, including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral deletion of PAPSS2 with PTEN and was correlated with patient survival. Finally, the translational dependency map is provided as a web-based application for exploring tumor vulnerabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在乳腺癌中经常发现导致BRCA1/2缺陷的肿瘤抑制基因BRCA1和BRCA2的突变,卵巢,前列腺,胰腺,和其他癌症。聚(ADP-核糖)聚合酶(PARP)抑制剂(PARP)通过诱导合成致死性选择性杀死BRCA1/2缺陷的癌细胞,为靶向癌症治疗提供有效的生物标志物指导策略。然而,相当一部分携带BRCA1/2突变的癌症患者对PARPis没有反应,随着时间的推移,大多数患者会对PARPis产生耐药性,强调了临床上PARPi治疗的主要障碍。最近的研究表明,BRCA1/2缺陷细胞的特定功能缺陷的变化,特别是它们在抑制和保护单链DNA缺口方面的缺陷,有助于PARPi诱导的合成致死性的得失。这些发现不仅阐明了PARPis的作用机制,但也导致了解释PARPis如何选择性杀死BRCA缺陷的癌细胞的修正模型。此外,从这些研究中出现了PARPi敏感性和耐药性的新机制原理,为预测PARPi反应和设计克服PARPi抵抗的治疗提供潜在有用的指南。在这篇评论中,我们将讨论这些最新的研究,并将它们与PARPi诱导的合成致死性的经典观点结合起来,旨在刺激开发新的治疗策略以克服PARPi抵抗并改善PARPi治疗。
    Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管程序性细胞死亡1(PD-1)/程序性死亡配体1(PD-L1)抑制在肿瘤治疗中取得了成功,许多患者没有受益。该故障可归因于PD-L1的固有功能。我们进行了全基因组CRISPR合成致死性筛选,以系统地探索PD-L1在头颈部鳞状细胞癌(HNSCC)细胞中的内在功能。确定铁凋亡相关基因对于PD-L1缺陷细胞的生存力至关重要。在PD-L1基因敲除细胞中,基因和药理学诱导铁死亡加速细胞死亡,它们也更容易受到免疫原性铁中毒的影响。机械上,核PD-L1转录激活SOD2以维持氧化还原稳态。在具有较高PD-L1表达的HNSCC患者中观察到较低的活性氧(ROS)和铁死亡。我们的研究表明,PD-L1通过激活SOD2介导的抗氧化途径赋予HNSCC细胞铁凋亡抗性,提示靶向PD-L1的内在功能可以增强治疗效果.
    Despite the success of programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition in tumor therapy, many patients do not benefit. This failure may be attributed to the intrinsic functions of PD-L1. We perform a genome-wide CRISPR synthetic lethality screen to systematically explore the intrinsic functions of PD-L1 in head and neck squamous cell carcinoma (HNSCC) cells, identifying ferroptosis-related genes as essential for the viability of PD-L1-deficient cells. Genetic and pharmacological induction of ferroptosis accelerates cell death in PD-L1 knockout cells, which are also more susceptible to immunogenic ferroptosis. Mechanistically, nuclear PD-L1 transcriptionally activates SOD2 to maintain redox homeostasis. Lower reactive oxygen species (ROS) and ferroptosis are observed in patients with HNSCC who have higher PD-L1 expression. Our study illustrates that PD-L1 confers ferroptosis resistance in HNSCC cells by activating the SOD2-mediated antioxidant pathway, suggesting that targeting the intrinsic functions of PD-L1 could enhance therapeutic efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号