Computing Methodologies

计算方法
  • 文章类型: Journal Article
    目的:该项目旨在确定使用数据驱动的计算预测模型和常规收集的医院病床管理数据来预测未来重症监护病床可用性的可行性。
    方法:在这个概念证明中,单中心数据信息学可行性研究,基于回归和分类的数据科学技术技术被用于前瞻性地收集常规医院范围内的病床管理数据,以预测重症监护病床容量.使用提前1、7和14天的预测范围预测至少一张重症监护床的可用性。
    结果:我们首次证明了仅使用常规收集的医院病床管理数据和可解释模型来预测重症监护病床容量而无需详细的患者水平数据的可行性。未来1天床可用性的预测性能优于14天(平均绝对误差分别为1.33vs1.61和曲线下面积0.78vs0.73)。通过分析特征重要性,我们证明,这些模型主要依赖于重症监护和时态数据,而不是来自医院其他病房的数据.
    结论:我们的数据驱动预测工具仅需要医院病床管理数据来预测重症监护病床的可用性。这种新颖的方法意味着在建模中不需要患者敏感数据,并保证在其他医院病房的未来床位可用性预测中进一步完善这种方法。
    结论:数据驱动的重症监护病床可用性预测是可能的。有必要对其在多中心重症监护环境或其他临床环境中的实用性进行进一步研究。
    OBJECTIVE: This project aims to determine the feasibility of predicting future critical care bed availability using data-driven computational forecast modelling and routinely collected hospital bed management data.
    METHODS: In this proof-of-concept, single-centre data informatics feasibility study, regression-based and classification data science techniques were applied retrospectively to prospectively collect routine hospital-wide bed management data to forecast critical care bed capacity. The availability of at least one critical care bed was forecasted using a forecast horizon of 1, 7 and 14 days in advance.
    RESULTS: We demonstrated for the first time the feasibility of forecasting critical care bed capacity without requiring detailed patient-level data using only routinely collected hospital bed management data and interpretable models. Predictive performance for bed availability 1 day in the future was better than 14 days (mean absolute error 1.33 vs 1.61 and area under the curve 0.78 vs 0.73, respectively). By analysing feature importance, we demonstrated that the models relied mainly on critical care and temporal data rather than data from other wards in the hospital.
    CONCLUSIONS: Our data-driven forecasting tool only required hospital bed management data to forecast critical care bed availability. This novel approach means no patient-sensitive data are required in the modelling and warrants further work to refine this approach in future bed availability forecast in other hospital wards.
    CONCLUSIONS: Data-driven critical care bed availability prediction was possible. Further investigations into its utility in multicentre critical care settings or in other clinical settings are warranted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    COVID-19和结构性种族主义的双重流行病使人们关注健康差异以及疾病对有色人种社区的不成比例的影响。卫生公平随后成为一个优先事项。认识到医疗保健的未来将由包括人工智能(AI)在内的先进信息技术提供信息,机器学习,和算法应用,作者认为,为了朝着改善健康公平的状态前进,健康信息专业人员需要参与和鼓励在健康公平的交叉点进行研究,健康差异,和计算生物医学知识(CBK)应用。建议提供了参与这一动员工作的手段。
    The twin pandemics of COVID-19 and structural racism brought into focus health disparities and disproportionate impacts of disease on communities of color. Health equity has subsequently emerged as a priority. Recognizing that the future of health care will be informed by advanced information technologies including artificial intelligence (AI), machine learning, and algorithmic applications, the authors argue that to advance towards states of improved health equity, health information professionals need to engage in and encourage the conduct of research at the intersections of health equity, health disparities, and computational biomedical knowledge (CBK) applications. Recommendations are provided with a means to engage in this mobilization effort.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:介绍量子计算技术作为生物医学研究的工具,并强调未来在医疗保健领域的应用。专注于它的能力,好处,和限制。
    背景:寻求探索量子计算并为医疗保健和生物医学研究创建基于量子的应用的研究人员。
    方法:量子计算需要专门的硬件,被称为量子处理单元,使用量子位(量子位)而不是经典位来执行计算。本文将涵盖(1)量子计算为生物医学中的经典计算提供优势的拟议应用;(2)介绍量子计算机如何操作,为生物医学研究人员量身定制;(3)扩大了量子计算的最新进展;(4)挑战,机遇,并提出了在生物医学应用中集成量子计算的解决方案。
    OBJECTIVE: To introduce quantum computing technologies as a tool for biomedical research and highlight future applications within healthcare, focusing on its capabilities, benefits, and limitations.
    BACKGROUND: Investigators seeking to explore quantum computing and create quantum-based applications for healthcare and biomedical research.
    METHODS: Quantum computing requires specialized hardware, known as quantum processing units, that use quantum bits (qubits) instead of classical bits to perform computations. This article will cover (1) proposed applications where quantum computing offers advantages to classical computing in biomedicine; (2) an introduction to how quantum computers operate, tailored for biomedical researchers; (3) recent progress that has expanded access to quantum computing; and (4) challenges, opportunities, and proposed solutions to integrate quantum computing in biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鸡的行为识别是至关重要的,原因有很多,包括促进动物福利,确保健康问题的早期发现,优化农场管理实践,并为更可持续和道德的家禽养殖做出贡献。在本文中,我们介绍了一种基于视频感知镶嵌的边缘计算设备上的鸡的行为识别技术。我们的方法将视频感知镶嵌与深度学习相结合,可以从视频中准确识别特定的鸡行为。它达到了惊人的准确性,用MobileNetV2对表现出三种行为的鸡达到79.61%。这些发现强调了我们的方法在边缘计算设备上进行鸡行为识别的有效性和前景。使其适应不同的应用。不断探索和识别各种行为模式将有助于更全面地了解鸡的行为,提高不同背景下行为分析的范围和准确性。
    Chicken behavior recognition is crucial for a number of reasons, including promoting animal welfare, ensuring the early detection of health issues, optimizing farm management practices, and contributing to more sustainable and ethical poultry farming. In this paper, we introduce a technique for recognizing chicken behavior on edge computing devices based on video sensing mosaicing. Our method combines video sensing mosaicing with deep learning to accurately identify specific chicken behaviors from videos. It attains remarkable accuracy, achieving 79.61% with MobileNetV2 for chickens demonstrating three types of behavior. These findings underscore the efficacy and promise of our approach in chicken behavior recognition on edge computing devices, making it adaptable for diverse applications. The ongoing exploration and identification of various behavioral patterns will contribute to a more comprehensive understanding of chicken behavior, enhancing the scope and accuracy of behavior analysis within diverse contexts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2019年冠状病毒病(COVID-19)大流行继续对公共卫生部门构成重大挑战,包括阿拉伯联合酋长国(UAE)。这项研究的目的是评估各种深度学习模型在预测阿联酋境内COVID-19病例中的效率和准确性。从而帮助国家的公共卫生当局在知情的决策。
    这项研究利用了一个全面的数据集,包括确诊的COVID-19病例,人口统计,和社会经济指标。几种先进的深度学习模型,包括长短期记忆(LSTM),双向LSTM,卷积神经网络(CNN)CNN-LSTM,多层感知器,和递归神经网络(RNN)模型,进行了培训和评估。还实施了贝叶斯优化来微调这些模型。
    评估框架显示,每个模型都表现出不同的预测准确性和精度水平。具体来说,即使没有优化,RNN模型也优于其他架构。进行了全面的预测和透视分析,以仔细检查COVID-19数据集。
    这项研究通过提供重要见解,使阿联酋的公共卫生当局能够部署有针对性的数据驱动的干预措施,从而超越了学术界限。RNN模型,这被认为是最可靠和准确的具体背景,可以显著影响公共卫生决策。此外,这项研究的更广泛意义验证了深度学习技术处理复杂数据集的能力,从而为公共卫生和医疗保健部门的预测准确性提供了变革性的潜力。
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to pose significant challenges to the public health sector, including that of the United Arab Emirates (UAE). The objective of this study was to assess the efficiency and accuracy of various deep-learning models in forecasting COVID-19 cases within the UAE, thereby aiding the nation\'s public health authorities in informed decision-making.
    METHODS: This study utilized a comprehensive dataset encompassing confirmed COVID-19 cases, demographic statistics, and socioeconomic indicators. Several advanced deep learning models, including long short-term memory (LSTM), bidirectional LSTM, convolutional neural network (CNN), CNN-LSTM, multilayer perceptron, and recurrent neural network (RNN) models, were trained and evaluated. Bayesian optimization was also implemented to fine-tune these models.
    RESULTS: The evaluation framework revealed that each model exhibited different levels of predictive accuracy and precision. Specifically, the RNN model outperformed the other architectures even without optimization. Comprehensive predictive and perspective analytics were conducted to scrutinize the COVID-19 dataset.
    CONCLUSIONS: This study transcends academic boundaries by offering critical insights that enable public health authorities in the UAE to deploy targeted data-driven interventions. The RNN model, which was identified as the most reliable and accurate for this specific context, can significantly influence public health decisions. Moreover, the broader implications of this research validate the capability of deep learning techniques in handling complex datasets, thus offering the transformative potential for predictive accuracy in the public health and healthcare sectors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:由于巨大的搜索空间,生物标志物的发现是一项具有挑战性的任务。量子计算和量子人工智能(量子AI)可用于解决从遗传数据中发现生物标志物的计算问题。
    方法:我们提出了一种量子神经网络架构来发现输入激活途径的遗传生物标志物。最大相关性-最小冗余标准评分生物标志物候选集。我们提出的模型是经济的,因为神经解决方案可以在受约束的硬件上交付。
    结果:我们证明了与CTLA4相关的四种激活途径的概念证明,包括(1)CTLA4激活独立,(2)CTLA4-CD8A-CD8B共激活,(3)CTLA4-CD2共激活,和(4)CTLA4-CD2-CD48-CD53-CD58-CD84共激活。
    结论:该模型表明与CLTA4相关途径的突变激活相关的新遗传生物标志物,包括20个基因:CLIC4,CPE,ETS2,FAM107A,GPR116,HYOU1,LCN2,MACF1,MT1G,NAPA,NDUFS5,PAK1,PFN1,PGAP3,PPM1G,PSMD8、RNF213、SLC25A3、UBA1和WLS。我们开源实现:https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks。
    BACKGROUND: Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data.
    METHODS: We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware.
    RESULTS: We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation.
    CONCLUSIONS: The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pauli通道是量子计算的基础,因为它们模拟了量子设备中最简单的噪声。我们提出了一种用于模拟Pauli通道的量子算法,并将其扩展为包含Pauli动态映射(参数化Pauli通道)。采用参数化的量子电路来适应动态映射。我们还建立了使用参数化电路可以实现N量子位变换的数学条件,其中只有一个单量子位操作取决于参数。在一个量子位的情况下,使用IBM的量子计算机演示了所提出的电路的实现,并报告此实现的保真度。
    Pauli channels are fundamental in the context of quantum computing as they model the simplest kind of noise in quantum devices. We propose a quantum algorithm for simulating Pauli channels and extend it to encompass Pauli dynamical maps (parametrized Pauli channels). A parametrized quantum circuit is employed to accommodate for dynamical maps. We also establish the mathematical conditions for an N-qubit transformation to be achievable using a parametrized circuit where only one single-qubit operation depends on the parameter. The implementation of the proposed circuit is demonstrated using IBM\'s quantum computers for the case of one qubit, and the fidelity of this implementation is reported.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    国际癌症研究机构(IARC)将PFOA归类为1类致癌物。这里,基于一种新颖的定制设计的抗PFOA单克隆抗体(mAb)2A3,开发了一种新的裸眼PFOA免疫染色试纸,可在10分钟内识别生活用水和真实人体样品中的PFOA,这首先是一种用于PFOA的免疫快速检测方法已被提出。利用量子计算等计算机模拟技术辅助设计PFOA半抗原的结构式,其中hapten是首次提出的。PFOA单克隆抗体(mAb)2A3的半数最大抑制浓度为2.4μg/mL。使用mAb2A3,我们开发了用于检测真实样品中的PFOA的免疫层析试纸条(ICS)。开发的方法在10分钟内产生结果,水的目测检出限为20、20和200μg/mL,检出限为50、200和500μg/mL,血液和尿液样本,分别。建立的ICS和间接竞争酶联免疫吸附试验用于分析实际样品,结果通过LC-MS/MS确认。我们的研究结果表明,ICS和ic-ELISA可以快速检测实际样品中的PFOA。
    The International Agency for Research on Cancer (IARC) classifies PFOA as a Class 1 carcinogen. Here, a new naked-eye PFOA immunochromographic strip was developed to recognize PFOA in domestic water and real human samples within 10 min based on a novel custom designed anti-PFOA monoclonal antibody (mAb) 2A3, which was firstly an immune rapid detection method for PFOA has been proposed. Using computer simulation techniques such as quantum computing to assist in designing the structural formula of PFOA semi antigen, which hapten was firstly proposed. The half maximal inhibitory concentration of PFOA monoclonal antibody (mAb) 2A3 was 2.4 μg/mL. Using mAb 2A3, we developed an immunochromatographic strip (ICS) for detecting PFOA in real samples. The developed method generated results in 10 min, with visual detection limits of 20, 20, and 200 μg/mL and limit of detection of 50, 200, and 500 μg/mL for water, blood and urine samples, respectively. The established ICS and indirect competitive enzyme-linked immunosorbent assay were used to analyze the actual samples, and the results were confirmed by LC-MS/MS. Our study findings showed that the ICS and ic-ELISA can quickly detect PFOA in actual samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转化生物信息学(TBI)通过整合基因组数据和临床信息,提供个性化医疗和量身定制的治疗选择,改变了医疗保健。近年来,TBI弥合了基因组和临床数据之间的差距,因为量子计算和利用最先进的技术等信息学的重大进展。本章讨论了转化生物信息学在改善人类健康方面的力量,从发现致病基因和变异到建立新的治疗技术。我们讨论了生物信息学在临床基因组学中的关键应用领域,如转化生物信息学中使用的数据源和方法,转化生物信息学对人类健康的影响,以及机器学习和人工智能如何被用来为药物开发和精准医学挖掘大量数据。我们也看看问题,约束,以及与利用基因组数据和转化生物信息学的未来及其对医学和人类健康的潜在影响有关的伦理问题。最终,本章强调了转化生物信息学在改变医疗保健和提高患者治疗效果方面的巨大潜力。
    Translational bioinformatics (TBI) has transformed healthcare by providing personalized medicine and tailored treatment options by integrating genomic data and clinical information. In recent years, TBI has bridged the gap between genome and clinical data because of significant advances in informatics like quantum computing and utilizing state-of-the-art technologies. This chapter discusses the power of translational bioinformatics in improving human health, from uncovering disease-causing genes and variations to establishing new therapeutic techniques. We discuss key application areas of bioinformatics in clinical genomics, such as data sources and methods used in translational bioinformatics, the impact of translational bioinformatics on human health, and how machine learning and artificial intelligence are being used to mine vast amounts of data for drug development and precision medicine. We also look at the problems, constraints, and ethical concerns connected with exploiting genomic data and the future of translational bioinformatics and its potential impact on medicine and human health. Ultimately, this chapter emphasizes the great potential of translational bioinformatics to alter healthcare and enhance patient outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    生物信息学通过使用计算方法来分析和解释生物数据,彻底改变了生物学和医学。量子力学最近已成为分析生物系统的一种有前途的工具,导致量子生物信息学的发展。这个新领域采用了量子力学的原理,量子算法,和量子计算来解决分子生物学中的复杂问题,药物设计,和蛋白质折叠。然而,生物信息学的交叉点,生物学和量子力学提出了独特的挑战。一个重要的挑战是科学家之间的量子生物信息学和量子生物学之间的混淆的可能性,有相似的目标和概念。此外,每个领域的不同计算使得很难从可能影响生物过程的其他因素中确定边界和识别纯粹的量子效应。这篇综述概述了量子生物学和量子力学的概念及其在量子生物信息学中的交集。我们研究了该领域的挑战和独特特征,并提出了量子生物信息学的分类,以促进跨学科合作并加速进步。通过释放量子生物信息学的全部潜力,这篇综述旨在帮助我们理解生物系统中的量子力学。
    Bioinformatics has revolutionized biology and medicine by using computational methods to analyze and interpret biological data. Quantum mechanics has recently emerged as a promising tool for the analysis of biological systems, leading to the development of quantum bioinformatics. This new field employs the principles of quantum mechanics, quantum algorithms, and quantum computing to solve complex problems in molecular biology, drug design, and protein folding. However, the intersection of bioinformatics, biology, and quantum mechanics presents unique challenges. One significant challenge is the possibility of confusion among scientists between quantum bioinformatics and quantum biology, which have similar goals and concepts. Additionally, the diverse calculations in each field make it difficult to establish boundaries and identify purely quantum effects from other factors that may affect biological processes. This review provides an overview of the concepts of quantum biology and quantum mechanics and their intersection in quantum bioinformatics. We examine the challenges and unique features of this field and propose a classification of quantum bioinformatics to promote interdisciplinary collaboration and accelerate progress. By unlocking the full potential of quantum bioinformatics, this review aims to contribute to our understanding of quantum mechanics in biological systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号