transcranial focused ultrasound

经颅聚焦超声
  • 文章类型: Journal Article
    经颅聚焦超声(tFUS)是一种新兴的神经调节方法,已在动物中得到证明,但由于颅骨中的声衰减和散射,因此难以转化为人类。最佳剂量递送需要对象特定的颅骨孔隙率估计,其传统上使用CT来完成。我们提出了从T1加权MRI图像中对颅骨孔隙率进行深度学习(DL)估计,从而消除了对辐射诱导CT扫描的需要。
    我们评估了不同DL方法的影响,包括网络架构,输入大小和维度,多通道输入,数据增强,和损失函数。我们还提出了掩模中的反向传播(BIM),一种方法,其中只有体素内的头骨面具有助于训练。我们评估了最佳模型对输入图像噪声和MRI采集参数的鲁棒性,并在数千个光束传播场景中传播了孔隙率估计误差。
    我们性能最佳的模型是具有ResNet-9生成器的cGAN,该生成器具有3D64×64×64输入,并使用L1和L2损失进行了训练。该模型在测试集中实现了6.9%的平均绝对误差,Izquierdo等人的伪CT为9.5%。(38%的改进)和9.4%的通用像素到像素图像转换cGANpix2pix(36%的改进)。与Burgos等人的伪CT方法相比,我们的方法在丘脑中的声学剂量分布更准确。和Izquierdo等人,与CT(参考)相比,导致在所有频率下接近最佳的治疗计划和剂量估计。
    我们的DL方法孔隙度估计误差为7%,对输入图像噪声和MRI采集参数(序列,线圈,场强),并在200-1000kHz频率范围内对中央(丘脑)和外侧脑目标(杏仁核)产生接近最佳的治疗计划和剂量估计。
    UNASSIGNED: Transcranial focused ultrasound (tFUS) is an emerging neuromodulation approach that has been demonstrated in animals but is difficult to translate to humans because of acoustic attenuation and scattering in the skull. Optimal dose delivery requires subject-specific skull porosity estimates which has traditionally been done using CT. We propose a deep learning (DL) estimation of skull porosity from T1-weighted MRI images which removes the need for radiation-inducing CT scans.
    UNASSIGNED: We evaluate the impact of different DL approaches, including network architecture, input size and dimensionality, multichannel inputs, data augmentation, and loss functions. We also propose back-propagation in the mask (BIM), a method whereby only voxels inside the skull mask contribute to training. We evaluate the robustness of the best model to input image noise and MRI acquisition parameters and propagate porosity estimation errors in thousands of beam propagation scenarios.
    UNASSIGNED: Our best performing model is a cGAN with a ResNet-9 generator with 3D 64×64×64 inputs trained with L1 and L2 losses. The model achieved a mean absolute error of 6.9% in the test set, compared to 9.5% with the pseudo-CT of Izquierdo et al. (38% improvement) and 9.4% with the generic pixel-to-pixel image translation cGAN pix2pix (36% improvement). Acoustic dose distributions in the thalamus were more accurate with our approach than with the pseudo-CT approach of both Burgos et al. and Izquierdo et al, resulting in near-optimal treatment planning and dose estimation at all frequencies compared to CT (reference).
    UNASSIGNED: Our DL approach porosity estimates with ~7% error, is robust to input image noise and MRI acquisition parameters (sequence, coils, field strength) and yields near-optimal treatment planning and dose estimates for both central (thalamus) and lateral brain targets (amygdala) in the 200-1000 kHz frequency range.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经颅聚焦超声能够精确和非侵入地操作人类的脑深部回路,有望为各种神经和精神健康状况提供安全有效的治疗方法。聚焦到深部脑目标的超声可用于直接调节神经活动或定位精神活性药物的释放。然而,这些应用受到了一个关键屏障——人类头骨的阻碍,它强烈且不可预测地衰减超声波。为了解决这个问题,我们开发了一种基于超声的方法,可以直接测量和补偿颅骨的超声衰减。没有额外的颅骨成像,模拟,假设,或自由参数是必要的;该方法通过从头部一侧的阵列发射超声脉冲并在相对侧的阵列测量来直接测量衰减。这里,我们将这种新兴方法应用于两个主要的未来用途-神经调节和局部药物释放。具体来说,我们表明,矫正能够有效刺激周围神经,并通过离体人颅骨从纳米颗粒载体中有效释放异丙酚。没有校正,两种应用都不有效。此外,这些效应显示了预期的剂量-反应关系和靶向特异性.本文强调了精确控制颅骨内超声强度的必要性,并为解决这一挥之不去的障碍提供了一种直接实用的方法。
    Transcranial focused ultrasound enables precise and non-invasive manipulations of deep brain circuits in humans, promising to provide safe and effective treatments of various neurological and mental health conditions. Ultrasound focused to deep brain targets can be used to modulate neural activity directly or localize the release of psychoactive drugs. However, these applications have been impeded by a key barrier-the human skull, which attenuates ultrasound strongly and unpredictably. To address this issue, we have developed an ultrasound-based approach that directly measures and compensates for the ultrasound attenuation by the skull. No additional skull imaging, simulations, assumptions, or free parameters are necessary; the method measures the attenuation directly by emitting a pulse of ultrasound from an array on one side of the head and measuring with an array on the opposite side. Here, we apply this emerging method to two primary future uses-neuromodulation and local drug release. Specifically, we show that the correction enables effective stimulation of peripheral nerves and effective release of propofol from nanoparticle carriers through an ex vivo human skull. Neither application was effective without the correction. Moreover, the effects show the expected dose-response relationship and targeting specificity. This article highlights the need for precise control of ultrasound intensity within the skull and provides a direct and practical approach for addressing this lingering barrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    其他非侵入性脑刺激技术无法比拟的,经颅超声(TUS)不仅在皮质表面而且在脑深部结构中提供高度聚焦刺激。这些独特的属性在基础和临床研究中都是无价的,并可能为治疗神经和精神疾病开辟新的途径。这里,我们简要概述了近年来不断扩大的临床研究数量以及即将开展的有关聚焦超声神经调节的研究计划.目前,临床TUS研究涉及各种神经精神疾病,如疼痛,痴呆症,运动障碍,精神病,癫痫,意识障碍,和发育障碍。正如在假对照随机研究中所证明的那样,TUS神经调节改善认知功能和情绪,缓解了精神分裂症和自闭症的症状。Further,不受控制的初步证据表明焦虑得到缓解,运动障碍的运动功能增强,减少癫痫发作频率,改善最低意识状态患者的反应性,以及神经调节TUS后疼痛减轻。虽然受到调查数量相对较少的限制,主要由小样本量的不受控制的可行性试验组成,TUS在治疗神经精神疾病方面具有令人鼓舞的前景。较大的假对照随机对照试验,除了对作用机制和最佳超声处理参数进行进一步的基础研究,不可避免地需要发挥TUS神经调节的全部潜力。
    Unmatched by other non-invasive brain stimulation techniques, transcranial ultrasound (TUS) offers highly focal stimulation not only on the cortical surface but also in deep brain structures. These unique attributes are invaluable in both basic and clinical research and might open new avenues for treating neurological and psychiatric diseases. Here, we provide a concise overview of the expanding volume of clinical investigations in recent years and upcoming research initiatives concerning focused ultrasound neuromodulation. Currently, clinical TUS research addresses a variety of neuropsychiatric conditions, such as pain, dementia, movement disorders, psychiatric conditions, epilepsy, disorders of consciousness, and developmental disorders. As demonstrated in sham-controlled randomized studies, TUS neuromodulation improved cognitive functions and mood, and alleviated symptoms in schizophrenia and autism. Further, preliminary uncontrolled evidence suggests relieved anxiety, enhanced motor functions in movement disorders, reduced epileptic seizure frequency, improved responsiveness in patients with minimally conscious state, as well as pain reduction after neuromodulatory TUS. While constrained by the relatively modest number of investigations, primarily consisting of uncontrolled feasibility trials with small sample sizes, TUS holds encouraging prospects for treating neuropsychiatric disorders. Larger sham-controlled randomized trials, alongside further basic research into the mechanisms of action and optimal sonication parameters, are inevitably needed to unfold the full potential of TUS neuromodulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经颅聚焦超声(TFUS)是一种新兴的神经调节工具,用于暂时改变大脑活动和探测网络功能。TFUS对默认模式网络(DMN)的影响是未知的。
    研究检查了经颅聚焦超声(TFUS)对默认模式网络(DMN)的功能连通性的影响,特别是针对后扣带皮质(PCC)。此外,我们调查了TFUS对情绪的主观影响,正念,和自我相关的处理。
    这项研究采用了随机,涉及30名健康受试者的单盲设计。参与者被随机分配到活性TFUS组或假TFUS组。在TFUS应用前后进行静息状态功能磁共振成像(rs-fMRI)扫描。为了衡量主观效果,多伦多正念量表,视觉模拟情绪量表,在基线和超声处理后30分钟进行阿姆斯特丹静息状态问卷。超声处理后30分钟,还进行了自我量表和非结构化访谈。
    活动的TFUS组沿DMN中线的功能连通性显着降低,而假TFUS组无变化。活跃的TFUS组表现出增加的状态正念,降低全球活力,和自我意义上的暂时改变,时间感,和回忆的回忆。假TFUS组显示状态正念增加,也是,没有其他主观影响。
    针对PCC的TFUS可以改变DMN连接并导致主观体验的变化。这些发现支持TFUS作为研究工具和潜在治疗干预的潜力。
    UNASSIGNED: Transcranial focused ultrasound (TFUS) is an emerging neuromodulation tool for temporarily altering brain activity and probing network functioning. The effects of TFUS on the default mode network (DMN) are unknown.
    UNASSIGNED: The study examined the effects of transcranial focused ultrasound (TFUS) on the functional connectivity of the default mode network (DMN), specifically by targeting the posterior cingulate cortex (PCC). Additionally, we investigated the subjective effects of TFUS on mood, mindfulness, and self-related processing.
    UNASSIGNED: The study employed a randomized, single-blind design involving 30 healthy subjects. Participants were randomly assigned to either the active TFUS group or the sham TFUS group. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted before and after the TFUS application. To measure subjective effects, the Toronto Mindfulness Scale, the Visual Analog Mood Scale, and the Amsterdam Resting State Questionnaire were administered at baseline and 30 min after sonication. The Self Scale and an unstructured interview were also administered 30 min after sonication.
    UNASSIGNED: The active TFUS group exhibited significant reductions in functional connectivity along the midline of the DMN, while the sham TFUS group showed no changes. The active TFUS group demonstrated increased state mindfulness, reduced Global Vigor, and temporary alterations in the sense of ego, sense of time, and recollection of memories. The sham TFUS group showed an increase in state mindfulness, too, with no other subjective effects.
    UNASSIGNED: TFUS targeted at the PCC can alter DMN connectivity and cause changes in subjective experience. These findings support the potential of TFUS to serve both as a research tool and as a potential therapeutic intervention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经颅聚焦超声刺激(tFUS)已成为一种有前途的神经调制技术,可提供具有高空间分辨率的声能,以诱导长期增强(LTP)或抑郁(LTD)样可塑性。tFUS诱导的可塑性的主要影响的可变性可能是由于不同的刺激模式,例如间歇性与连续性,这是一个需要进一步详细探索的方面。在这项研究中,我们开发了一个平台来评估间歇性和连续性tFUS在应用tFUS前后对运动皮质可塑性的神经调节作用.三组大鼠暴露于间歇性,连续,或假tFUS。我们通过检查经颅磁刺激(TMS)引起的运动诱发电位(MEP)的变化,分析了对运动皮层兴奋性的神经调节作用。我们还研究了不同刺激模式对兴奋性和抑制性神经生物标志物的影响,使用免疫组织化学染色检查c-Fos和谷氨酸脱羧酶(GAD-65)的表达。此外,我们通过分析胶质纤维酸性蛋白(GFAP)的表达来评估tFUS的安全性。目前的结果表明,间歇性tFUS对电机兴奋性产生了促进作用,而连续tFUS显著抑制运动兴奋性。此外,tFUS方法均未对大鼠的刺激部位造成损伤。免疫组织化学染色显示,间歇性tFUS后c-Fos增加,GAD-65表达减少。相反,连续tFUS下调c-Fos并上调GAD-65表达。总之,我们的研究结果表明,间歇性和连续性tFUS均能有效调节皮质兴奋性.神经调节作用可能是由于tFUS干预后皮质神经元的激活或失活所致。这些效果被认为是安全和耐受性良好的,强调在未来的临床神经调节应用中使用不同模式的tFUS的潜力。
    Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    慢性疼痛,复杂而衰弱的状况,对世界各地的患者和医疗保健提供者都构成了重大挑战。传统的药物干预通常证明不足以提供令人满意的缓解,同时携带成瘾和不良反应的风险。近年来,电神经调节在慢性疼痛治疗中成为一种有希望的替代方法.该方法需要对中枢神经系统内的特定神经或区域进行精确的电刺激以调节疼痛信号。通过包括改变神经活动和释放内源性疼痛缓解物质的机制,电神经调节能有效缓解疼痛,提高患者生活质量。电神经调节的几种方式,具有不同等级的侵入性,提供量身定制的策略来解决各种形式和起源的慢性疼痛。通过对慢性疼痛的解剖和生理途径的探索,包括神经递质的参与,这篇叙述性综述提供了对电疗法作用机制的见解,临床效用,以及慢性疼痛管理的未来前景。
    Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged as a promising alternative in chronic pain management. This method entails the precise administration of electrical stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mechanisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric neuromodulation can effectively alleviate pain and improve patients\' quality of life. Several modalities of electric neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompassing neurotransmitter involvement, this narrative review offers insights into electrical therapies\' mechanisms of action, clinical utility, and future perspectives in chronic pain management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光学跟踪是一种用于经颅聚焦超声(tFUS)程序的实时换能器定位方法,但是来自光学跟踪的预测焦点通常不包含特定对象的颅骨信息。声学模拟可以估计通过颅骨传播时的压力场,但依赖于在模拟空间中准确复制换能器和颅骨的定位。这里,我们开发并描述了一个工作流程的准确性,该工作流程基于神经导航体模中的光学跟踪信息创建模拟网格,有或没有通过离体颅骨帽的传输。软件管道可以在光学跟踪系统的范围内复制tFUS程序的几何形状(经颅目标配准误差(TRE):3.9±0.7mm)。通过光学跟踪预测的模拟焦点和自由场焦点对于体模和颅骨帽具有0.5±0.1和1.2±0.4mm的低欧几里德距离误差,分别,模拟捕捉到了一些头骨特有的效果。然而,通过光学跟踪获得的模拟的TRE为4.6±0.2,与许多tFUS系统使用的焦点尺寸一样大或更大。通过使用原始TRE偏移更新换能器的位置,我们将模拟的TRE减小到1.1±0.4mm。我们的研究描述了治疗计划的软件管道,评估其准确性,并演示了一种使用MR声辐射力成像作为改善剂量测定的方法。总的来说,我们的软件管道有助于估计声暴露,我们的研究强调需要图像反馈来提高tFUS剂量测定的准确性。
    Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an ex vivo skull cap. The software pipeline could replicate the geometry of the tFUS procedure within the limits of the optical tracking system (transcranial target registration error (TRE): 3.9 ± 0.7 mm). The simulated focus and the free-field focus predicted by optical tracking had low Euclidean distance errors of 0.5±0.1 and 1.2±0.4 mm for phantom and skull cap, respectively, and some skull-specific effects were captured by the simulation. However, the TRE of simulation informed by optical tracking was 4.6±0.2, which is as large or greater than the focal spot size used by many tFUS systems. By updating the position of the transducer using the original TRE offset, we reduced the simulated TRE to 1.1 ± 0.4 mm. Our study describes a software pipeline for treatment planning, evaluates its accuracy, and demonstrates an approach using MR-acoustic radiation force imaging as a method to improve dosimetry. Overall, our software pipeline helps estimate acoustic exposure, and our study highlights the need for image feedback to increase the accuracy of tFUS dosimetry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在神经调节技术中使用重复刺激程序来诱导持续的兴奋性或抑制性脑活动。通过修改刺激长度,根据经验调节调制的方向性,间隔,和力量。然而,使用超声刺激的双向神经元调制很少报道。这项研究提出了在药物诱发的急性癫痫大鼠模型中通过重复的经颅聚焦超声刺激对癫痫样活动的双向控制。发现细长的重复传输(40秒),超低压(0.25MPa)超声可以在脑电图和脑血容量测量中完全抑制癫痫活动,即使在相同的爆发长度下,爆发间隔从40到20s的变化也会使癫痫活动恶化。此外,由40s长爆发引起的抑制通过随后的传输转化为兴奋状态。通过调节谷氨酸和γ-氨基丁酸水平的变化,实现重复超声刺激对癫痫发作的双向调节,表达的c-Fos和GAD65的测量以及通过微透析获得的间质液中神经递质的多时态分析证实了这一点。
    Repetitive stimulation procedures are used in neuromodulation techniques to induce persistent excitatory or inhibitory brain activity. The directivity of modulation is empirically regulated by modifying the stimulation length, interval, and strength. However, bidirectional neuronal modulations using ultrasound stimulations are rarely reported. This study presents bidirectional control of epileptiform activities with repetitive transcranial-focused ultrasound stimulations in a rat model of drug-induced acute epilepsy. It is found that repeated transmission of elongated (40 s), ultra-low pressure (0.25 MPa) ultrasound can fully suppress epileptic activities in electro-encephalography and cerebral blood volume measurements, while the change in bursting intervals from 40 to 20 s worsens epileptic activities even with the same burst length. Furthermore, the suppression induced by 40 s long bursts is transformed to excitatory states by a subsequent transmission. Bidirectional modulation of epileptic seizures with repeated ultrasound stimulation is achieved by regulating the changes in glutamate and γ-Aminobutyric acid levels, as confirmed by measurements of expressed c-Fos and GAD65 and multitemporal analysis of neurotransmitters in the interstitial fluid obtained via microdialysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非侵入性超声神经调节(USNM)是探索神经回路和治疗神经系统疾病的强大工具。由于颅骨的异质性以及调制和治疗目标的区域差异,有必要开发一种有效且空间可控的神经调节方法。最近,经颅聚焦超声(tFUS)结合外部生物微/纳米材料进行脑刺激已引起广泛关注。这项研究的重点是tFUS与全氟戊烷(PFP)纳米液滴(NDs)结合,以提高USNM的功效和空间可控性。开发的两级可变脉冲tFUS序列,包括用于将PFPND汽化为微泡(MB)的声液滴汽化(ADV)脉冲和用于诱导形成的MB的机械振荡以增强神经元活动的USNM序列。Further,调整ADV脉冲产生的可控汽化区域的声压,从而实现空间可控的神经调节。结果表明,与没有ADV的PFPNDs组相比,ADV组的c-fos细胞表达的平均密度(109±19个细胞/mm2)明显更高(37.34±8.24个细胞/mm2)。ADV脉冲的声压在体外为1.98MPa和2.81MPa,分别产生了0.146±0.032cm2和0.349±0.056cm2的汽化区域。在相同的刺激条件下,更大的蒸发区域也获得了更高的声压在体内,诱导更广泛的神经元激活区域。因此,这项研究将为开发有效且空间可控的tFUS神经调节策略提供有价值的参考。
    Non-invasive ultrasound neuromodulation (USNM) is a powerful tool to explore neural circuits and treat neurological disorders. Due to the heterogeneity of the skull and regional variations in modulation and treatment objectives, it is necessary to develop an efficient and spatially controllable neuromodulation approach. Recently, transcranial focused ultrasound (tFUS) combined with external biomicro/nanomaterials for brain stimulation has garnered significant attention. This study focused on tFUS combined with perfluoropentane (PFP) nanodroplets (NDs) to improve the efficacy and spatial controllability of USNM. The developed two-stage variable pulse tFUS sequence that include the acoustic droplet vaporization (ADV) pulse for vaporizing PFP NDs into microbubbles (MBs) and the USNM sequence for inducing mechanical oscillations of the formed MBs to enhance neuronal activity. Further, adjusting the acoustic pressure of the ADV pulse generated the controllable vaporization regions, thereby achieving spatially controllable neuromodulation. The results showed that the mean densities of c-fos+ cells expression in the group of PFP NDs with ADV (109 ± 19 cells/mm2) were significantly higher compared to the group without ADV (37.34 ± 8.24 cells/mm2). The acoustic pressure of the ADV pulse with 1.98 MPa and 2.81 MPa in vitro generated the vaporization regions of 0.146 ± 0.032 cm2 and 0.349 ± 0.056 cm2, respectively. Under the same stimulation conditions, a larger vaporization region was also obtained with higher acoustic pressure in vivo, inducing a broader region of neuronal activation. Therefore, this study will serve as a valuable reference for developing the efficient and spatially controllable tFUS neuromodulation strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经颅聚焦超声治疗(tcFUS)提供精确的热消融治疗帕金森病和特发性震颤。然而,精确治疗计划所需的纤维跟踪和分割的手动微调是耗时的,并且需要复杂神经成像工具的专业知识。这提出了一个问题,即全自动管道是否可行,或者是否仍然需要人工干预。
    我们研究了对纤维束成像算法的依赖性,分割方法,和自动化程度,专门用于特发性震颤治疗计划。为此,我们将自动管道与手动方法进行比较,该方法需要手动定义目标点,并且基于FMRIB软件库(FSL)和其他开源工具。
    我们的发现证明了自动纤维跟踪和自动确定标准治疗坐标的高度可行性。采用自动纤维跟踪方法和深度学习(DL)支持的标准坐标计算,我们获得了与手动执行的基于FSL的管道相当的解剖学上有意义的结果。个别病例可能仍然存在差异,通常源于感兴趣区域(ROI)分割的差异。值得注意的是,基于DL的方法在产生准确分割方面优于基于配准的方法。精确的ROI分割证明至关重要,超越了微调参数或选择算法的重要性。正确的丘脑和红核分割在确保精确的路径计算中起着至关重要的作用。
    这项研究强调了tcFUS治疗的纤维跟踪算法自动化的潜力,但承认在治疗计划中需要专家验证和整合解剖学专业知识。
    UNASSIGNED: Transcranial focused ultrasound therapy (tcFUS) offers precise thermal ablation for treating Parkinson\'s disease and essential tremor. However, the manual fine-tuning of fiber tracking and segmentation required for accurate treatment planning is time-consuming and demands expert knowledge of complex neuroimaging tools. This raises the question of whether a fully automated pipeline is feasible or if manual intervention remains necessary.
    UNASSIGNED: We investigate the dependence on fiber tractography algorithms, segmentation approaches, and degrees of automation, specifically for essential tremor therapy planning. For that purpose, we compare an automatic pipeline with a manual approach that requires the manual definition of the target point and is based on FMRIB software library (FSL) and other open-source tools.
    UNASSIGNED: Our findings demonstrate the high feasibility of automatic fiber tracking and the automated determination of standard treatment coordinates. Employing an automatic fiber tracking approach and deep learning (DL)-supported standard coordinate calculation, we achieve anatomically meaningful results comparable to a manually performed FSL-based pipeline. Individual cases may still exhibit variations, often stemming from differences in region of interest (ROI) segmentation. Notably, the DL-based approach outperforms registration-based methods in producing accurate segmentations. Precise ROI segmentation proves crucial, surpassing the importance of fine-tuning parameters or selecting algorithms. Correct thalamus and red nucleus segmentation play vital roles in ensuring accurate pathway computation.
    UNASSIGNED: This study highlights the potential for automation in fiber tracking algorithms for tcFUS therapy, but acknowledges the ongoing need for expert verification and integration of anatomical expertise in treatment planning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号