terpene biosynthesis

萜烯生物合成
  • 文章类型: Journal Article
    背景:桃金娘(Rhodomyrtustomentosa(Ait。)Hassk),是桃金娘科的常绿灌木,富含生物活性挥发物(α-pine烯和β-石竹烯),具有药用和工业应用。然而,玫瑰桃金娘挥发性积累的潜在机制仍不清楚。
    结果:这里,我们提出了玫瑰桃金娘的染色体水平基因组组装(基因组大小=466Mb,支架N50=43.7Mb),预测了35,554个蛋白质编码基因。通过比较基因组分析,我们发现基因扩增和重复对挥发性物质的积累有潜在的贡献。我们提出,正选择的作用显着参与挥发性积累。我们鉴定了毛霉素中的43个TPS基因。进一步的转录组和TPS基因家族分析表明,TPS的不同基因亚组可能对默特尔灌木和树木家族中不同挥发物的生物合成和积累做出了巨大贡献。结果表明,TPS-a亚组的多样性导致了桃金娘科不同植物中特殊倍半萜的积累。
    结论:高质量的染色体水平玫瑰桃金娘基因组和TPS基因家族的比较分析为在药用植物中获得更高商业价值的精油开辟了新途径。
    BACKGROUND: Rose myrtle (Rhodomyrtus tomentosa (Ait.) Hassk), is an evergreen shrub species belonging to the family Myrtaceae, which is enriched with bioactive volatiles (α-pinene and β-caryophyllene) with medicinal and industrial applications. However, the mechanism underlying the volatile accumulation in the rose myrtle is still unclear.
    RESULTS: Here, we present a chromosome-level genomic assembly of rose myrtle (genome size = 466 Mb, scaffold N50 = 43.7 Mb) with 35,554 protein-coding genes predicted. Through comparative genomic analysis, we found that gene expansion and duplication had a potential contribution to the accumulation of volatile substances. We proposed that the action of positive selection was significantly involved in volatile accumulation. We identified 43 TPS genes in R. tomentosa. Further transcriptomic and TPS gene family analyses demonstrated that the distinct gene subgroups of TPS may contribute greatly to the biosynthesis and accumulation of different volatiles in the Myrtle family of shrubs and trees. The results suggested that the diversity of TPS-a subgroups led to the accumulation of special sesquiterpenes in different plants of the Myrtaceae family.
    CONCLUSIONS: The high quality chromosome-level rose myrtle genome and the comparative analysis of TPS gene family open new avenues for obtaining a higher commercial value of essential oils in medical plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    静脉沙蝇,Lutzomialongialpis,利什曼原虫寄生虫的主要媒介,使用萜烯信息素来吸引交配。对Longipalpis乳杆菌基因组的检查显示了一种推定的萜烯合酶(TPS),在异源表达时,和净化,大肠杆菌产生了一种功能性酶。TPS,称为LTPS,以低效率将二磷酸香叶酯(3GPP)转化为单萜的混合物,其中β-辛烯是主要产物。(E,E)-法尼基二磷酸(FPP)主要产生少量(E)-β-法尼烯,而(Z,E)-和(Z,Z)-FPP产生了双代谢物异构体的混合物。这些单萜和倍半萜都不是L.longipalpis的已知挥发物。值得注意的是,然而,当提供(E,E,E)-香叶基香叶基二磷酸(G3GPP),LTPS给出索布拉烯作为其主要产物。这种二萜信息素是由龙氏乳杆菌的某些化学型释放的,特别是在巴西塞阿拉州发现的那些。次要的二萜成分也被视为与沙蝇信息素提取物中看到的那些相匹配的酶的产物。
    The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which β-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-β-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酶促萜烯官能化是植物次生代谢产物多样性的重要组成部分。在这里面,需要多种萜烯修饰酶来实现植物通讯和防御所必需的挥发性化合物的化学多样性。这项工作揭示了Caryopteris×clandonensis中的差异转录基因,这些基因能够功能化环状萜烯支架,这是萜烯环化酶作用的产物。现有的基因组参考进行了进一步的改进,以提供全面的基础,其中重叠群的数量被最小化。六个品种的RNA-Seq数据,黑暗骑士,大布鲁,像黄金一样好,黄金的提示,粉红完美,还有阳光蓝,被映射到引用上,并研究了它们独特的转录谱。在此数据资源中,我们在与萜烯官能化有关的Caryopteris×clandonensis的叶子中检测到了有趣的变异以及具有高和低转录丰度的基因。如前所述,不同的品种对单萜的修饰不同,尤其是柠檬烯,产生不同的柠檬烯衍生分子。这项研究的重点是预测所研究样品之间这种变化的转录模式的细胞色素p450酶。因此,使它们成为这些植物之间萜类化合物差异的合理解释。此外,这些数据为功能测定和验证推定的酶活性提供了基础。
    Enzymatic terpene functionalization is an essential part of plant secondary metabolite diversity. Within this, multiple terpene-modifying enzymes are required to enable the chemical diversity of volatile compounds essential in plant communication and defense. This work sheds light on the differentially transcribed genes within Caryopteris × clandonensis that are capable of functionalizing cyclic terpene scaffolds, which are the product of terpene cyclase action. The available genomic reference was subjected to further improvements to provide a comprehensive basis, where the number of contigs was minimized. RNA-Seq data of six cultivars, Dark Knight, Grand Bleu, Good as Gold, Hint of Gold, Pink Perfection, and Sunny Blue, were mapped on the reference, and their distinct transcription profile investigated. Within this data resource, we detected interesting variations and additionally genes with high and low transcript abundancies in leaves of Caryopteris × clandonensis related to terpene functionalization. As previously described, different cultivars vary in their modification of monoterpenes, especially limonene, resulting in different limonene-derived molecules. This study focuses on predicting the cytochrome p450 enzymes underlying this varied transcription pattern between investigated samples. Thus, making them a reasonable explanation for terpenoid differences between these plants. Furthermore, these data provide the basis for functional assays and the verification of putative enzyme activities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:洪水是植物生长和发育中最严重的非生物胁迫之一。棉花响应浸没胁迫的浸没耐性机制尚不清楚。
    结果:转录组结果表明,在淹没胁迫下,总共发现了6,893个差异表达基因(DEGs)。基因本体论(GO)富集分析表明,DEG参与各种应激或刺激反应。京都基因和基因组百科全书(KEGG)通路分析表明,DEGs与植物激素信号转导有关,淀粉和蔗糖代谢,淹没胁迫调节糖酵解和次生代谢产物的生物合成。在激素信号转导中鉴定了8个与乙烯信号相关的DEGs和3个乙烯合成基因。对于呼吸代谢,乙醇脱氢酶(ADH,GH_A02G0728)和丙酮酸脱羧酶(PDC,GH_D09G1778)显著上调,但6-磷酸果糖激酶(PFK,GH_D05G0280),磷酸甘油酸激酶(PGK,GH_A01G0945和GH_D01G0967)和蔗糖合酶基因(SUS,GH_A06G0873和GH_D06G0851)在淹没处理中显著下调。在浸没胁迫下,次级代谢产物中萜烯生物合成途径相关基因受到调控。
    结论:通过呼吸代谢调节萜烯生物合成可能在提高棉花对淹水的耐受性方面发挥作用。我们的研究结果表明,甲羟戊酸途径,发生在萜类骨架生物合成途径(ko00900)的细胞质中,可能是淹没应力的主要反应。
    BACKGROUND: Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism of submergence tolerance of cotton in response to submergence stress is unknown.
    RESULTS: The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the submergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in submergence stress.
    CONCLUSIONS: Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the tolerance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submergence stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    液-液相分离形成具有高度浓缩的液相的冷凝物,一个定义但动态的边界,以及边界内外的动态交换。相变驱动细胞中动态多酶复合物的形成,以及了解相分离如何调节多酶催化可能需要体外研究的帮助。最近,我们通过在蛋白质缩合物中组装酶来构建多酶生物合成系统的合成版本。这里,我们描述了使用荧光显微镜和离心测定检查酶组装的方法。我们进一步提供了分析冷凝物内部级联酶催化效率的步骤,利用萜烯生物合成途径中的酶。
    Liquid-liquid phase separation forms condensates that feature a highly concentrated liquid phase, a defined yet dynamic boundary, and dynamic exchange at and across the boundary. Phase transition drives the formation of dynamic multienzyme complexes in cells, and understanding how phase separation regulates multienzyme catalysis may need the help of in vitro investigations. Recently we have constructed synthetic versions of multienzyme biosynthetic systems by assembling enzymes in protein condensates. Here, we describe the methods for checking the enzyme assembly using fluorescent microscopy and centrifugation assay. We further provide steps for analysis of the cascade enzyme catalytic efficiencies inside the condensates, using enzymes from terpene biosynthesis pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Azadirachtaindica(neem),柳科的常青树,是一种有效的生物农药印字素的来源。缺乏染色体水平的组装阻碍了对其基因组结构的深入理解和对A的比较基因组分析。这里,使用Illumina的数据组合构建了A.index的高质量基因组组装体,PacBio,Hi-C技术,这是A的第一个染色体规模的基因组组装。根据我们装配的长度,a的基因组大小估计为281Mb,锚定在14条染色体上(重叠群N50=6Mb,支架N50=19Mb)。基因组组装包含115Mb重复元件和25,767个蛋白质编码基因。进化分析显示,在核心eudicotγ事件之后,ina没有经历任何全基因组重复(WGD)事件,但是一些基因和基因组片段可能最近经历了重复。次级代谢物簇,TPS基因,和CYP基因也被鉴定。比较基因组分析表明,大多数in草特异性TPS基因和CYP基因位于13号染色体上的萜烯相关簇。提示13号染色体可能在A的特定萜烯生物合成中起重要作用。基因复制事件可能是in草的萜烯生物合成扩增的原因。为A.indea创建的基因组数据集和基因组分析将阐明A.in的萜烯生物合成,并促进了Meliaceae家族的比较基因组研究。
    Azadirachta indica (neem), an evergreen tree of the Meliaceae family, is a source of the potent biopesticide azadirachtin. The lack of a chromosome-level assembly impedes an in-depth understanding of its genome architecture and the comparative genomic analysis of A. indica. Here, a high-quality genome assembly of A. indica was constructed using a combination of data from Illumina, PacBio, and Hi-C technology, which is the first chromosome-scale genome assembly of A. indica. Based on the length of our assembly, the genome size of A. indica is estimated to be 281 Mb anchored to 14 chromosomes (contig N50 = 6 Mb and scaffold N50 = 19 Mb). The genome assembly contained 115 Mb repetitive elements and 25,767 protein-coding genes. Evolutional analysis revealed that A. indica didn\'t experience any whole-genome duplication (WGD) event after the core eudicot γ event, but some genes and genome segment might likely experienced recent duplications. The secondary metabolite clusters, TPS genes, and CYP genes were also identified. Comparative genomic analysis revealed that most of the A. indica-specific TPS genes and CYP genes were located on the terpene-related clusters on chromosome 13. It is suggested that chromosome 13 may play an important role in the specific terpene biosynthesis of A. indica. The gene duplication events may be responsible for the terpene biosynthesis expansion in A. indica. The genomic dataset and genomic analysis created for A. indica will shed light on terpene biosynthesis in A. indica and facilitate comparative genomic research of the family Meliaceae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    萜类化合物是一类具有广泛工业应用的次生代谢产物。工程蓝藻是可持续生产商品萜类化合物的有吸引力的途径。目前,主要障碍在于工程蓝细菌菌株的生产率低。改善途径动力学的传统代谢工程在提高萜类化合物生产力方面取得了有限的成功。在这项研究中,我们揭示了热力学是蓝细菌中柠檬烯高生产率的主要决定因素。通过过度表达主要的西格玛因子,在延伸神经球菌PCC7942的工程菌株中实现了更高的光合速率。计算模型和湿实验室分析显示,光合产物输出对天然碳汇糖原合成和非天然柠檬烯合成的通量增加。另一方面,比较蛋白质组学显示萜烯途径酶的表达减少,揭示了它们在确定萜烯通量中的有限作用。最后,通过增强光合作用的生长优化导致7天内柠檬烯滴度为19mg/L,最大生产率为4.3mg/L/天。这项研究强调了增强光合作用和底物输入对于次级代谢途径的高生产率的重要性,为未来在光养生物中的萜类工程提供了新的策略。
    Terpenoids are a large group of secondary metabolites with broad industrial applications. Engineering cyanobacteria is an attractive route for the sustainable production of commodity terpenoids. Currently, a major obstacle lies in the low productivity attained in engineered cyanobacterial strains. Traditional metabolic engineering to improve pathway kinetics has led to limited success in enhancing terpenoid productivity. In this study, we reveal thermodynamics as the main determinant for high limonene productivity in cyanobacteria. Through overexpressing the primary sigma factor, a higher photosynthetic rate was achieved in an engineered strain of Synechococcus elongatus PCC 7942. Computational modeling and wet lab analyses showed an increased flux toward both native carbon sink glycogen synthesis and the non-native limonene synthesis from photosynthate output. On the other hand, comparative proteomics showed decreased expression of terpene pathway enzymes, revealing their limited role in determining terpene flux. Lastly, growth optimization by enhancing photosynthesis has led to a limonene titer of 19 mg/L in 7 days with a maximum productivity of 4.3 mg/L/day. This study highlights the importance of enhancing photosynthesis and substrate input for the high productivity of secondary metabolic pathways, providing a new strategy for future terpenoid engineering in phototrophs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    辛多拉glabra是一种经济上重要的树,在树干中产生丰富的油脂树脂。这里,我们通过结合IlluminaHiSeq,太平洋生物科学测序,Hi-C技术。S.glabra基因组的大小为1.11Gb,具有1.27Mb的重叠群N50和31,944个预测基因。这是Caesalpinioideae亚科的第一个测序基因组。作为蛇床子科的姐妹分类单元,在过去的7330万年中,美国glabra经历了由核心eudicots共享的古老基因组重复和由早期豆类共享的进一步的全基因组重复。谷草具有特定基因和扩展基因,主要参与应激反应和次生代谢产物的生物合成。此外,鉴定了59个萜烯骨架生物合成基因和64个萜烯合酶基因,与共表达的转录因子一起可能有助于萜类化合物的多样性和特异性以及S.glabra茎中的高萜类含量。此外,研究发现63个抗病性NBS-LRR基因在甘蓝基因组中是独特的,它们的表达水平与萜烯谱的积累相关。提示了S.glabra中萜烯的潜在防御功能。这些共同为理解基因组进化和油树脂生产提供了新的资源。
    Sindora glabra is an economically important tree that produces abundant oleoresin in the trunk. Here, we present a high-quality chromosome-scale assembly of S. glabra genome by combining Illumina HiSeq, Pacific Biosciences sequencing, and Hi-C technologies. The size of S. glabra genome was 1.11 Gb, with a contig N50 of 1.27 Mb and 31,944 predicted genes. This is the first sequenced genome of the subfamily Caesalpinioideae. As a sister taxon to Papilionoideae, S. glabra underwent an ancient genome triplication shared by core eudicots and further whole-genome duplication shared by early-legume in the last 73.3 million years. S. glabra harbors specific genes and expanded genes largely involved in stress responses and biosynthesis of secondary metabolites. Moreover, 59 terpene backbone biosynthesis genes and 64 terpene synthase genes were identified, which together with co-expressed transcription factors could contribute to the diversity and specificity of terpene compounds and high terpene content in S. glabra stem. In addition, 63 disease resistance NBS-LRR genes were found to be unique in S. glabra genome and their expression levels were correlated with the accumulation of terpene profiles, suggesting potential defense function of terpenes in S. glabra. These together provide new resources for understanding genome evolution and oleoresin production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Serrulatane二萜是在无花果科(玄参科)属的植物中发现的天然产物。这些化合物中的许多已经被表征为具有抗微生物性质并且共享共同的二萜主链。一个例子,来自德克萨斯州鼠尾草(Leucophyllumfrutescens)的leubethanol已证明具有针对耐多药结核病的活性。Leubethanol是该属中唯一鉴定出的Serrulatane二萜;但是,在紧密相关的Eremophila属中已经发现了一系列这样的化合物。尽管它们具有潜在的治疗相关性,以前还没有报道过serrulatane二萜的生物合成。在这里,我们利用了简单的产品概况和在乳杆菌根中的高积累,并将组织特异性转录组与来自Eremophilaserrulata的现有数据进行了比较,以破译leubethanol的生物合成。短链顺式-戊烯基转移酶(LfCPT1)首先产生稀有的二萜前体橙花二磷酸,通过不寻常的质体萜合酶(LfTPS1)环化为特征性的五瓜烷二萜主链。通过CYP71家族的细胞色素P450(CYP71D616)催化最终转化为亮菌醇。该途径记录了短链顺式异戊二烯二磷酸合酶的存在,以前只在茄科发现,可能参与Eremophila中其他已知的二萜主链的生物合成。LfTPS1代表在质体中接受新底物的区室转换萜烯合酶的新官能化。生物合成获得亮叶烷醇将能够发现更复杂的Serrulatane二萜类化合物的途径,这些化合物具有这种共同的起始结构,并为异源系统中此类有前途的抗微生物治疗剂的生产和多样化提供了平台。
    Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    萜类化合物是最大的和结构上最多样化的一类天然产物。它们在多种检测和对抗疾病中具有有效和特异的生物活性,包括癌症和疟疾作为著名的例子。虽然被表征的萜类分子的数量是巨大的,我们对它们如何生物合成的知识是有限的,特别是与经过充分研究的thiotemplate装配线相比。细菌最近才被认为具有生物合成大量复杂萜类化合物的遗传潜力,但是我们目前将遗传潜力与分子结构联系起来的能力受到了严重的限制。典型的萜烯生物合成途径使用单一酶形成环化的烃主链,然后用一套定制酶进行修饰,所述定制酶可以从单一主链产生数十种不同的产物。萜烯生物合成途径的这种功能混杂性使得萜烯生物合成易于使用合成生物学领域的最新发展进行合理途径工程。这些工程途径不仅有助于已知和新型萜类化合物的合理创造,它们的发展将加深我们对生物合成的一个重要分支的理解。获得的生物合成见解可能会使非天然萜烯生物合成途径的工程熟练程度更高,并为高价值萜类化合物的生物技术生产铺平道路。
    Terpenoids are the largest and structurally most diverse class of natural products. They possess potent and specific biological activity in multiple assays and against diseases, including cancer and malaria as notable examples. Although the number of characterized terpenoid molecules is huge, our knowledge of how they are biosynthesized is limited, particularly when compared to the well-studied thiotemplate assembly lines. Bacteria have only recently been recognized as having the genetic potential to biosynthesize a large number of complex terpenoids, but our current ability to associate genetic potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This functional promiscuity of terpene biosynthetic pathways renders terpene biosynthesis susceptible to rational pathway engineering using the latest developments in the field of synthetic biology. These engineered pathways will not only facilitate the rational creation of both known and novel terpenoids, their development will deepen our understanding of a significant branch of biosynthesis. The biosynthetic insights gained will likely empower a greater degree of engineering proficiency for non-natural terpene biosynthetic pathways and pave the way towards the biotechnological production of high value terpenoids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号