optogenetics

光遗传学
  • 文章类型: Journal Article
    运动技能获得的效率取决于年龄,使得在以后的生活中学习复杂的动作变得越来越具有挑战性。斑马雀,例如,在发展的关键时期获得复杂的人声运动程序,此后,学习的歌曲基本上不受修改的影响。尽管抑制性中间神经元与关键时期的闭合有关,目前尚不清楚操纵它们是否可以重新打开增强的运动可塑性窗口。使用药理学和细胞类型特异性光遗传学方法,我们操纵了成年斑马雀运动前区域的抑制性神经元活性,超出了其关键时期。当受到新颖歌曲形式的听觉刺激时,被操纵的鸟类为其稳定的歌曲序列添加了新的人声音节。通过在感官体验期间解除运动前区域的抑制,我们重新引入了声带可塑性,在不影响现有歌曲制作的情况下,促进音节曲目的扩展。我们的发现提供了对运动技能学习能力的见解,提供受伤后运动恢复的潜力,并提出了治疗涉及抑制功能障碍的神经发育障碍的途径。
    The efficiency of motor skill acquisition is age-dependent, making it increasingly challenging to learn complex manoeuvres later in life. Zebra finches, for instance, acquire a complex vocal motor programme during a developmental critical period after which the learned song is essentially impervious to modification. Although inhibitory interneurons are implicated in critical period closure, it is unclear whether manipulating them can reopen heightened motor plasticity windows. Using pharmacology and a cell-type specific optogenetic approach, we manipulated inhibitory neuron activity in a premotor area of adult zebra finches beyond their critical period. When exposed to auditory stimulation in the form of novel songs, manipulated birds added new vocal syllables to their stable song sequence. By lifting inhibition in a premotor area during sensory experience, we reintroduced vocal plasticity, promoting an expansion of the syllable repertoire without compromising pre-existing song production. Our findings provide insights into motor skill learning capacities, offer potential for motor recovery after injury, and suggest avenues for treating neurodevelopmental disorders involving inhibitory dysfunctions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在动物发育过程中,分子事件的时空特性在很大程度上决定了生物学结果.传统的基因分析方法缺乏精确解剖发育机制的时空分辨率。尽管存在用于操纵培养细胞中的设计蛋白的光遗传学工具,很少有成功应用于活体动物的内源性蛋白质。这里,我们报道了OptoTrap,用于操纵不同大小的内源性蛋白质的光诱导聚类系统,亚细胞位置,和果蝇的功能。这个系统打开得很快,在几分钟或几小时内是可逆的,并包含针对神经元和上皮细胞优化的变体。通过使用OptoTrap破坏微管并抑制神经元中的驱动蛋白-1,我们表明微管支持高度动态树突的生长,并且驱动蛋白1是时空差异域中低级和高级树突分支的图案化所必需的。OptoTrap允许以时空方式精确操作内源性蛋白质,因此有望研究各种细胞类型和发育阶段的发育机制。
    During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in Drosophila. This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经降压素(Nts)是一种神经肽,在大脑中充当神经调节剂。药理学研究已将Nts确定为有效的低温剂。内侧视前区,在控制体温调节中起重要作用的地区,含有高密度的神经降压素神经元和Nts受体。神经降压素能神经元在体温调节中起作用的条件尚不清楚。在这项研究中,视前Nts神经元的光遗传学刺激诱导了小的热疗。体外,视前Nts神经元的光遗传学刺激导致GABA的突触释放和视前垂体腺苷酸环化酶激活多肽(Adcyap1)神经元放电活性的净抑制。GABA-A受体拮抗剂或Nts神经元中Slc32a1(VGAT)的遗传缺失也被Nts受体1拮抗剂所阻断。刺激缺乏Slc32a1的视前Nts神经元导致Adcyap1神经元兴奋和体温过低。在Nts神经元中缺乏Slc32a1表达的小鼠表现出发烧反应以及对热或冷暴露的反应以及体温昼夜节律的改变。大脑中所有Nts神经元的化学遗传激活诱导了4-5°C的低温,可以被视前区的Nts受体拮抗剂阻断。视前神经张力能投射的化学遗传激活导致视前Adcyap1神经元的强烈激发。一起来看,我们的数据表明,内源性释放的Nts可以诱导强低温,并且激发视前Adcyap1神经元是触发这种反应的细胞机制。
    Neurotensin (Nts) is a neuropeptide acting as a neuromodulator in the brain. Pharmacological studies have identified Nts as a potent hypothermic agent. The medial preoptic area, a region that plays an important role in the control of thermoregulation, contains a high density of neurotensinergic neurons and Nts receptors. The conditions in which neurotensinergic neurons play a role in thermoregulation are not known. In this study, optogenetic stimulation of preoptic Nts neurons induced a small hyperthermia. In vitro, optogenetic stimulation of preoptic Nts neurons resulted in synaptic release of GABA and net inhibition of the preoptic pituitary adenylate cyclase-activating polypeptide (Adcyap1) neurons firing activity. GABA-A receptor antagonist or genetic deletion of Slc32a1 (VGAT) in Nts neurons unmasked also an excitatory effect that was blocked by a Nts receptor 1 antagonist. Stimulation of preoptic Nts neurons lacking Slc32a1 resulted in excitation of Adcyap1 neurons and hypothermia. Mice lacking Slc32a1 expression in Nts neurons presented changes in the fever response and in the responses to heat or cold exposure as well as an altered circadian rhythm of body temperature. Chemogenetic activation of all Nts neurons in the brain induced a 4-5°C hypothermia, which could be blocked by Nts receptor antagonists in the preoptic area. Chemogenetic activation of preoptic neurotensinergic projections resulted in robust excitation of preoptic Adcyap1 neurons. Taken together, our data demonstrate that endogenously released Nts can induce potent hypothermia and that excitation of preoptic Adcyap1 neurons is the cellular mechanism that triggers this response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    tau蛋白的脑内扩散是与阿尔茨海默病(AD)和其他tau蛋白病变的功能下降相关的关键机制。最近,已经出现了一个假设,表明tau传播与功能性神经元连接有关,特别是由神经元过度活动驱动的。然而,这一假设的实验验证仍然有限。在这项研究中,我们研究了tau如何从内嗅皮层传播到海马,AD中最易受tau病理影响的神经元回路,受到沿着该回路的神经元活动的选择性刺激的影响。使用结合光遗传学的种子诱导繁殖的小鼠模型,我们发现,在4周的时间内,这种神经元连接的慢性刺激导致不溶性tau在内嗅皮层和海马中的积累显著增加。重要的是,海马中tau相对于内嗅皮层中tau积累的比例,作为跨细胞扩散的指标,在受到慢性刺激的小鼠中明显更高。这些结果支持异常神经元活动促进tau传播的观点,从而将其与tau蛋白病的进展有关。
    The intracerebral spread of tau is a critical mechanism associated with functional decline in Alzheimer\'s disease (AD) and other tauopathies. Recently, a hypothesis has emerged suggesting that tau propagation is linked to functional neuronal connections, specifically driven by neuronal hyperactivity. However, experimental validation of this hypothesis remains limited. In this study, we investigated how tau propagation from the entorhinal cortex to the hippocampus, the neuronal circuit most susceptible to tau pathology in AD, is affected by the selective stimulation of neuronal activity along this circuit. Using a mouse model of seed-induced propagation combined with optogenetics, we found that the chronic stimulation of this neuronal connection over a 4-week period resulted in a significant increase in insoluble tau accumulation in both the entorhinal cortex and hippocampus. Importantly, the ratio of tau accumulation in the hippocampus relative to that in the entorhinal cortex, serving as an indicator of transcellular spreading, was significantly higher in mice subjected to chronic stimulation. These results support the notion that abnormal neuronal activity promotes tau propagation, thereby implicating it in the progression of tauopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:广泛的神经性疼痛通常影响广泛的身体区域,并给患者带来巨大的痛苦。然而,人们对它是如何发生的知之甚少,缺乏有效的治疗干预措施。
    方法:通过部分眶下神经横断(p-IONX)引起广泛的神经性疼痛,并通过测量伤害性阈值进行评估。体内/体外电生理学用于评估神经元活性。病毒追踪策略,结合光遗传学和化学遗传学,用于阐明重塑回路在广泛的神经性疼痛中的作用。
    结果:我们发现在接受p-IONX的小鼠中,随着疼痛敏感性从口面部扩散到身体远端,丘脑腹侧后内侧核(VPMGlu)中的谷氨酸能神经元过度活跃,对施加于后爪或尾巴的刺激反应更敏感。追踪实验表明,p-IONX在VPMGlu的传入电路中诱导了重塑,特别是在背柱核(DCNGlu)的谷氨酸能神经元的更多投影证明。此外,从DCN接收传入的VPMGlu将投影进一步扩展到后岛叶皮层(pIC)的谷氨酸能神经元。选择性抑制VPM中DCNGlu的末端,pIC中VPMGlu的躯体或VPMGlu的末端均减轻了三叉神经和广泛的神经性疼痛。
    结论:这些结果表明,过度活跃的VPMGlu从DCN招募新的传入,并在p-IONX后将头外输入传递给pIC,因此在三叉神经疼痛及其扩散中占有关键地位。这项研究为广泛的神经性疼痛的潜在治疗靶点提供了对回路机制和临床前证据的新见解。
    BACKGROUND: Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking.
    METHODS: Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds. In vivo/vitro electrophysiology were used to evaluate neuronal activity. Virus tracing strategies, combined with optogenetics and chemogenetics, were used to clarify the role of remodeling circuit in widespread neuropathic pain.
    RESULTS: We found that in mice receiving p-IONX, along with pain sensitization spreading from the orofacial area to distal body parts, glutamatergic neurons in the ventral posteromedial nucleus of the thalamus (VPMGlu) were hyperactive and more responsive to stimulations applied to the hind paw or tail. Tracing experiments revealed that a remodeling was induced by p-IONX in the afferent circuitry of VPMGlu, notably evidenced by more projections from glutamatergic neurons in the dorsal column nuclei (DCNGlu). Moreover, VPMGlu receiving afferents from the DCN extended projections further to glutamatergic neurons in the posterior insular cortex (pIC). Selective inhibition of the terminals of DCNGlu in the VPM, the soma of VPMGlu or the terminals of VPMGlu in the pIC all alleviated trigeminal and widespread neuropathic pain.
    CONCLUSIONS: These results demonstrate that hyperactive VPMGlu recruit new afferents from the DCN and relay the extra-cephalic input to the pIC after p-IONX, thus hold a key position in trigeminal neuropathic pain and its spreading. This study provides novel insights into the circuit mechanism and preclinical evidence for potential therapeutic targets of widespread neuropathic pain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    为了促进心血管研究开发无创光学心脏起搏方法,我们已经建立了适用于光遗传学起搏的双转基因果蝇(果蝇)模型。我们创建了具有兴奋性H134R-ChR2和抑制性eNpHR2.0视蛋白转基因的苍蝇。使用Hand-GAL4驱动器在飞心中表达视蛋白。在这里,我们描述了手>H134R-ChR2;eNpHR2.0模型表征,包括在不同波长的光照射下的双向心脏控制(激活和抑制)。使用集成的光刺激和光学相干显微镜(OCM)系统,可以无创地实现光学控制和心脏功能的实时可视化。OCM产生高速和高分辨率成像;同时,心脏功能由引起心动过速的蓝色(470nm)或红色(617nm)光脉冲调节,在同一只动物中,心动过缓和可恢复的心脏骤停发作。优化了辐照功率水平和照明时间表,以在果蝇幼虫和p中成功实现非侵入性双向心脏起搏。
    In order to facilitate cardiovascular research to develop non-invasive optical heart pacing methods, we have generated a double-transgenic Drosophila melanogaster (fruit fly) model suitable for optogenetic pacing. We created a fly stock with both excitatory H134R-ChR2 and inhibitory eNpHR2.0 opsin transgenes. Opsins were expressed in the fly heart using the Hand-GAL4 driver. Here we describe Hand > H134R-ChR2; eNpHR2.0 model characterization including bi-directional heart control (activation and inhibition) upon illumination of light with distinct wavelengths. Optical control and real-time visualization of the heart function were achieved non-invasively using an integrated light stimulation and optical coherence microscopy (OCM) system. OCM produced high-speed and high-resolution imaging; simultaneously, the heart function was modulated by blue (470 nm) or red (617 nm) light pulses causing tachycardia, bradycardia and restorable cardiac arrest episodes in the same animal. The irradiance power levels and illumination schedules were optimized to achieve successful non-invasive bi-directional heart pacing in Drosophila larvae and pupae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光遗传学是一项尖端技术,它融合了光控制和遗传学,以实现组织细胞的靶向控制。与传统方法相比,光遗传学在时间和空间精度方面提供了几个优势,准确度,减少对研究对象的损害。目前,光遗传学主要用于途径研究,药物筛选,基因表达调控,和刺激分子释放来治疗各种疾病。光敏感蛋白的选择是光遗传学技术最关键的方面;发生结构变化或下游通道被激活以实现信号传递或因子释放,允许有效和可控的疾病治疗。在这次审查中,我们研究了在生物医学领域进行的关于光遗传学的广泛研究,包括光敏蛋白的选择,载体和输送装置的研究,以及疾病治疗的应用。此外,我们提供了光遗传学在临床医学领域的重要见解和未来意义。
    Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视紫红质是神经科学中流行的光遗传学工具,但在机械上仍然知之甚少。在这里,我们报告了来自莱茵衣藻和H.catenoideskalium通道视紫红质2(ChR2)的低温EM结构。我们显示ChR2将内源性N-视黄亚甲基-PE样分子招募到先前未识别的外侧视网膜结合口袋,在HEK293细胞中表现出降低的光响应。相比之下,H.catenoideskalium通道视紫红质(KCR1)在相同条件下在其经典视网膜结合袋中结合内源性视网膜。然而,外源ATR降低野生型KCR1的光电流大小,并抑制其泄漏突变体C110T。我们的结果揭示了哺乳动物细胞中不同的视网膜发色团与通道视紫红质的不同结合模式,这可能进一步激发下一代光遗传学的复杂任务,如细胞命运控制。
    Channelrhodopsins are popular optogenetic tools in neuroscience, but remain poorly understood mechanistically. Here we report the cryo-EM structures of channelrhodopsin-2 (ChR2) from Chlamydomonas reinhardtii and H. catenoides kalium channelrhodopsin (KCR1). We show that ChR2 recruits an endogenous N-retinylidene-PE-like molecule to a previously unidentified lateral retinal binding pocket, exhibiting a reduced light response in HEK293 cells. In contrast, H. catenoides kalium channelrhodopsin (KCR1) binds an endogenous retinal in its canonical retinal binding pocket under identical condition. However, exogenous ATR reduces the photocurrent magnitude of wild type KCR1 and also inhibits its leaky mutant C110T. Our results uncover diverse retinal chromophores with distinct binding patterns for channelrhodopsins in mammalian cells, which may further inspire next generation optogenetics for complex tasks such as cell fate control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    X辐射的视觉感知是有据可查的,但对这种现象知之甚少。苏格兰视杆细胞和视紫红质与X射线的视觉反应有关,然而,一些证据表明,X射线通过与可见光不同的机制激发视网膜。虽然视紫红质在X射线感知中的作用尚不清楚,它可以作为X射线受体发挥作用的可能性导致人们猜测它可以作为转基因表达的X射线受体。如果是,它可用于转导经颅X射线信号,并在侵入性较小的光遗传学版本中控制基因靶向神经元群体的活动,X-遗传学.在这里,我们研究了人类视紫红质(hRho)在视网膜环境外表达时是否能够转换X射线信号。我们使用活细胞cAMPGloSensor发光测定法来测量表达hRho的HEK293细胞响应于可见光和X射线刺激的cAMP减少。我们显示,cAMPGloSensor发光减少未观察到hRho表达HEK293细胞响应X射线刺激,尽管对可见光有强烈的反应。此外,辐照对cAMPGloSensor对随后的可见光刺激的响应没有显着影响。这些结果表明,异位表达的视紫红质不能作为X射线受体起作用,并且不能将经颅X射线信号转换为X射线介导的神经活动,基因靶向神经调节。
    Visual perception of X-radiation is a well-documented, but poorly understood phenomenon. Scotopic rod cells and rhodopsin have been implicated in visual responses to X-rays, however, some evidence suggests that X-rays excite the retina via a different mechanism than visible light. While rhodopsin\'s role in X-ray perception is unclear, the possibility that it could function as an X-ray receptor has led to speculation that it could act as a transgenically expressed X-ray receptor. If so, it could be used to transduce transcranial X-ray signals and control the activity of genetically targeted populations of neurons in a less invasive version of optogenetics, X-genetics. Here we investigate whether human rhodopsin (hRho) is capable of transducing X-ray signals when expressed outside of the retinal environment. We use a live-cell cAMP GloSensor luminescence assay to measure cAMP decreases in hRho-expressing HEK293 cells in response to visible light and X-ray stimulation. We show that cAMP GloSensor luminescence decreases are not observed in hRho-expressing HEK293 cells in response to X-ray stimulation, despite the presence of robust responses to visible light. Additionally, irradiation had no significant effect on cAMP GloSensor responses to subsequent visible light stimulation. These results suggest that ectopically expressed rhodopsin does not function as an X-ray receptor and is not capable of transducing transcranial X-ray signals into neural activity for X-ray mediated, genetically targeted neuromodulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    振荡是生物系统中跨尺度的反复出现的现象,但是破译他们的基本原则是非常具有挑战性的。这里,我们通过在大肠杆菌中重新设计被称为“抑制因子”的具有良好特性的合成振荡器并使用光遗传学对其进行控制来应对这一挑战,创建“光振荡器”。细菌菌落表现为空间环模式的振荡。当我们施加周期性的光脉冲时,光振荡器表现为强制振荡器,我们系统地研究了各种光条件下的环的性质。将实验与数学建模相结合,我们证明了这个简单的振荡电路可以产生复杂的动力学,这些动力学被转换成不同的空间模式。我们报告同步的观察,共振,次谐波共振和周期加倍。此外,我们提供了一个混乱政权的证据。这项工作突出了合成振荡器可访问的复杂时空模式,并强调了我们的方法在揭示生物振荡的基本原理方面的潜力。
    Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as \"repressilator\" in Escherichia coli and controlling it using optogenetics, creating the \"optoscillator\". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号