medical image segmentation

医学图像分割
  • 文章类型: Journal Article
    肺癌是全球癌症相关死亡的主要原因。为了准确诊断和治疗,需要对医学图像进行精确的肿瘤分割。然而,肿瘤形态学的内在复杂性和变异性对分割任务提出了重大挑战。为了解决这个问题,我们提出了一种具有师生框架的多任务连接U-Net模型,以提高肺肿瘤分割的有效性。所提出的模型和框架将PET知识集成到分割过程中,利用来自CT和PET模式的补充信息来提高分割性能。此外,我们实施了一种肿瘤区域检测方法来增强肿瘤分割性能。在四个数据集的广泛实验中,使用我们的模型获得的平均骰子系数为0.56,超过了现有方法,如Segformer(0.51),变压器(0.50),和UctransNet(0.43)。这些发现验证了所提出的方法在肺肿瘤分割任务中的有效性。
    Lung cancer is a predominant cause of cancer-related mortality worldwide, necessitating precise tumor segmentation of medical images for accurate diagnosis and treatment. However, the intrinsic complexity and variability of tumor morphology pose substantial challenges to segmentation tasks. To address this issue, we propose a multitask connected U-Net model with a teacher-student framework to enhance the effectiveness of lung tumor segmentation. The proposed model and framework integrate PET knowledge into the segmentation process, leveraging complementary information from both CT and PET modalities to improve segmentation performance. Additionally, we implemented a tumor area detection method to enhance tumor segmentation performance. In extensive experiments on four datasets, the average Dice coefficient of 0.56, obtained using our model, surpassed those of existing methods such as Segformer (0.51), Transformer (0.50), and UctransNet (0.43). These findings validate the efficacy of the proposed method in lung tumor segmentation tasks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    卷积神经网络(CNN)在各种医学图像分割任务中取得了最先进的成果。然而,CNN通常假设源数据集和目标数据集遵循相同的概率分布,当这个假设不满足时,它们的性能会显著下降。这在医学图像分析中造成了限制,其中包括来自不同成像方式的信息可以带来巨大的临床益处。在这项工作中,我们提出了一种用于医学图像分割的无监督结构感知跨模态域自适应(StAC-DA)框架。
    StAC-DA以连续两步方法实现图像和特征级自适应。第一步执行图像级对齐,其中,通过实现基于CycleGAN的模型,将来自源域的图像转换到像素空间中的目标域。后一种模型包括在平移期间保持解剖结构的形状的结构感知网络。第二步包括特征级对齐。使用变换后的源域图像和目标域图像以对抗方式训练具有深度监督的U-Net网络,以产生目标域的可能分割。
    在双向心脏子结构分割上评估框架。StAC-DA优于领先的无监督域自适应方法,从磁共振成像(MRI)到计算机断层扫描(CT)域以及从CT到MRI域时,在升主动脉的分割中排名第一。
    所提出的框架克服了训练和测试数据集中的不同分布所带来的限制。此外,实验结果强调了它在不同成像模式下提高医学图像分割精度的潜力。
    UNASSIGNED: Convolutional neural networks (CNNs) have achieved state-of-the-art results in various medical image segmentation tasks. However, CNNs often assume that the source and target dataset follow the same probability distribution and when this assumption is not satisfied their performance degrades significantly. This poses a limitation in medical image analysis, where including information from different imaging modalities can bring large clinical benefits. In this work, we present an unsupervised Structure Aware Cross-modality Domain Adaptation (StAC-DA) framework for medical image segmentation.
    UNASSIGNED: StAC-DA implements an image- and feature-level adaptation in a sequential two-step approach. The first step performs an image-level alignment, where images from the source domain are translated to the target domain in pixel space by implementing a CycleGAN-based model. The latter model includes a structure-aware network that preserves the shape of the anatomical structure during translation. The second step consists of a feature-level alignment. A U-Net network with deep supervision is trained with the transformed source domain images and target domain images in an adversarial manner to produce probable segmentations for the target domain.
    UNASSIGNED: The framework is evaluated on bidirectional cardiac substructure segmentation. StAC-DA outperforms leading unsupervised domain adaptation approaches, being ranked first in the segmentation of the ascending aorta when adapting from Magnetic Resonance Imaging (MRI) to Computed Tomography (CT) domain and from CT to MRI domain.
    UNASSIGNED: The presented framework overcomes the limitations posed by differing distributions in training and testing datasets. Moreover, the experimental results highlight its potential to improve the accuracy of medical image segmentation across diverse imaging modalities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    现有的医学图像分割方法可能只考虑空间域的特征提取和信息处理,或者缺乏频率信息和空间信息之间相互作用的设计,或者忽略浅层和深层特征之间的语义鸿沟,并导致分割结果不准确。因此,在本文中,我们提出了一种新颖的频率选择分段网络(FSSN),通过融合局部空间特征和全局频率信息实现更准确的病变分割,更好的功能交互设计,并抑制低相关频率分量,以减轻语义差距。首先,我们提出了一个全局-局部特征聚合模块(GLAM),以同时捕获空间域中的多尺度局部特征,并利用频域中的全局频率信息,实现局部细节特征和全局频率信息的互补融合。其次,我们提出了一个特征过滤器模块(FFM)来减轻语义差距,当我们进行跨级别的特征融合,并使FSSN有区别地确定应保留哪些频率信息以进行准确的病变分割。最后,为了更好地利用当地信息,尤其是病变区域的边界,我们采用可变形卷积(DC)来提取局部范围内的相关特征,并使我们的FSSN可以更好地专注于相关图像内容。在两个公共基准数据集上的大量实验表明,与代表性的医学图像分割方法相比,我们的FSSN能够以较少的参数和较低的计算复杂度,在客观评价指标和主观视觉效果方面获得更准确的病变分割结果.
    Existing medical image segmentation methods may only consider feature extraction and information processing in spatial domain, or lack the design of interaction between frequency information and spatial information, or ignore the semantic gaps between shallow and deep features, and lead to inaccurate segmentation results. Therefore, in this paper, we propose a novel frequency selection segmentation network (FSSN), which achieves more accurate lesion segmentation by fusing local spatial features and global frequency information, better design of feature interactions, and suppressing low correlation frequency components for mitigating semantic gaps. Firstly, we propose a global-local feature aggregation module (GLAM) to simultaneously capture multi-scale local features in the spatial domain and exploits global frequency information in the frequency domain, and achieves complementary fusion of local details features and global frequency information. Secondly, we propose a feature filter module (FFM) to mitigate semantic gaps when we conduct cross-level features fusion, and makes FSSN discriminatively determine which frequency information should be preserved for accurate lesion segmentation. Finally, in order to make better use of local information, especially the boundary of lesion region, we employ deformable convolution (DC) to extract pertinent features in the local range, and makes our FSSN can focus on relevant image contents better. Extensive experiments on two public benchmark datasets show that compared with representative medical image segmentation methods, our FSSN can obtain more accurate lesion segmentation results in terms of both objective evaluation indicators and subjective visual effects with fewer parameters and lower computational complexity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于深度学习的计算机断层扫描(CT)成像的快速目标分割方法已经变得越来越流行。当前深度学习方法的成功通常取决于大量的标记数据。给医疗数据贴标签是一项耗时且费力的任务。因此,本文旨在通过使用半监督学习方法来增强CT图像的分割。为了利用未标记数据中的有效信息,设计了基于熵约束的半监督网络对比学习模型。我们使用CNN和Transformer来捕获图像的局部和全局特征信息,分别。此外,教师网络生成的伪标签是不可靠的,如果直接添加到训练中,将导致模型性能下降。因此,具有高熵值的不可靠样本被丢弃以避免模型提取错误的特征。在学生网络中,我们还引入了残差挤压和激励模块来学习每一层特征的不同通道之间的联系,以获得更好的分割性能。我们在COVID-19CT公共数据集上证明了该方法的有效性。我们主要考虑了三个评价指标:DSC,HD95和JC。与现有的几种最先进的半监督方法相比,我们的方法将DSC提高了2.3%,JC下降2.5%,HD95减少1.9毫米。在本文中,融合CNN和Transformer,利用熵约束的对比学习损失,设计了一种半监督医学图像分割方法,这提高了未标记医学图像的利用率。
    Deep learning-based methods for fast target segmentation of computed tomography (CT) imaging have become increasingly popular. The success of current deep learning methods usually depends on a large amount of labeled data. Labeling medical data is a time-consuming and laborious task. Therefore, this paper aims to enhance the segmentation of CT images by using a semi-supervised learning method. In order to utilize the valid information in unlabeled data, we design a semi-supervised network model for contrastive learning based on entropy constraints. We use CNN and Transformer to capture the image\'s local and global feature information, respectively. In addition, the pseudo-labels generated by the teacher networks are unreliable and will lead to degradation of the model performance if they are directly added to the training. Therefore, unreliable samples with high entropy values are discarded to avoid the model extracting the wrong features. In the student network, we also introduce the residual squeeze and excitation module to learn the connection between different channels of each layer feature to obtain better segmentation performance. We demonstrate the effectiveness of the proposed method on the COVID-19 CT public dataset. We mainly considered three evaluation metrics: DSC, HD95, and JC. Compared with several existing state-of-the-art semi-supervised methods, our method improves DSC by 2.3%, JC by 2.5%, and reduces HD95 by 1.9 mm. In this paper, a semi-supervised medical image segmentation method is designed by fusing CNN and Transformer and utilizing entropy-constrained contrastive learning loss, which improves the utilization of unlabeled medical images.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    UNet架构在医学图像分割应用中取得了巨大的成功。然而,这些模型仍然遇到一些挑战。一个是由多个下采样步骤引起的像素级信息的丢失。此外,解码器中使用的加法或级联方法可以生成冗余信息。这些限制影响了本地化能力,削弱了不同层次特征的互补性,可能导致边界模糊。然而,差分特征可以有效地弥补这些缺点,显著提高图像分割的性能。因此,我们提出了基于UNet的MGRAD-UNet(多门控反向注意多尺度差分UNet)。我们利用多尺度差分解码器在像素级和结构级生成丰富的差分特征。这些功能作为门信号,被发送到门控制器并转发到另一个差分解码器。为了加强对重要区域的关注,另一个差分解码器配备了反向注意。对两个差分解码器获得的特征进行了第二次微分。得到的差分特征作为控制信号被发送回控制器,然后传输到编码器用于由两个差分解码器学习差分特征。MGRAD-UNet的核心设计在于通过缓存整体差分特征和多尺度差分处理,提取全面、准确的特征,从不同的信息中实现迭代学习。我们在两个公共数据集上针对最新的(SOTA)方法评估了MGRAD-UNet。我们的方法超越了竞争对手,为UNet的设计提供了新的方法。
    UNet architecture has achieved great success in medical image segmentation applications. However, these models still encounter several challenges. One is the loss of pixel-level information caused by multiple down-sampling steps. Additionally, the addition or concatenation method used in the decoder can generate redundant information. These limitations affect the localization ability, weaken the complementarity of features at different levels and can lead to blurred boundaries. However, differential features can effectively compensate for these shortcomings and significantly enhance the performance of image segmentation. Therefore, we propose MGRAD-UNet (multi-gated reverse attention multi-scale differential UNet) based on UNet. We utilize the multi-scale differential decoder to generate abundant differential features at both the pixel level and structure level. These features which serve as gate signals, are transmitted to the gate controller and forwarded to the other differential decoder. In order to enhance the focus on important regions, another differential decoder is equipped with reverse attention. The features obtained by two differential decoders are differentiated for the second time. The resulting differential feature obtained is sent back to the controller as a control signal, then transmitted to the encoder for learning the differential feature by two differential decoders. The core design of MGRAD-UNet lies in extracting comprehensive and accurate features through caching overall differential features and multi-scale differential processing, enabling iterative learning from diverse information. We evaluate MGRAD-UNet against state-of-theart (SOTA) methods on two public datasets. Our method surpasses competitors and provides a new approach for the design of UNet.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    计算机辅助诊断在口腔溃疡领域发展缓慢。造成这种情况的主要原因之一是缺乏公开可用的数据集。然而,口腔溃疡有癌性病变,死亡率高。在早期及时有效地识别口腔溃疡的能力是一个非常关键的问题。近年来,尽管有一小群研究人员在研究这些,数据集是私有的。因此,为了应对这一挑战,本文提出了一个包含两个主要任务的多任务的口腔溃疡数据集(Autooral),即病变分割和分类。据我们所知,我们是第一个通过多任务处理公开口腔溃疡数据集的团队.此外,我们提出了一个新的建模框架,HF-UNet,用于分割口腔溃疡病变区域。具体来说,所提出的高阶聚焦交互模块(HFblock)通过高阶注意力执行全局属性的获取和局部属性的获取。所提出的病变定位模块(LL-M)采用了一种新颖的混合Sobel滤波器,这提高了溃疡边缘的识别。在所提出的Autooral数据集上的实验结果表明,我们提出的口腔溃疡的HF-UNet分割实现了约0.80的DSC值,并且推理记忆仅占用2029MB。所提出的方法保证了较低的运行负载,同时保持了高性能的分段能力。建议的Autooral数据集和代码可从https://github.com/wurenkai/HF-UNet-and-Autooral-数据集获得。
    Computer-aided diagnosis has been slow to develop in the field of oral ulcers. One of the major reasons for this is the lack of publicly available datasets. However, oral ulcers have cancerous lesions and their mortality rate is high. The ability to recognize oral ulcers at an early stage in a timely and effective manner is a very critical issue. In recent years, although there exists a small group of researchers working on these, the datasets are private. Therefore to address this challenge, in this paper a multi-tasking oral ulcer dataset (Autooral) containing two major tasks of lesion segmentation and classification is proposed and made publicly available. To the best of our knowledge, we are the first team to make publicly available an oral ulcer dataset with multi-tasking. In addition, we propose a novel modeling framework, HF-UNet, for segmenting oral ulcer lesion regions. Specifically, the proposed high-order focus interaction module (HFblock) performs acquisition of global properties and focus for acquisition of local properties through high-order attention. The proposed lesion localization module (LL-M) employs a novel hybrid sobel filter, which improves the recognition of ulcer edges. Experimental results on the proposed Autooral dataset show that our proposed HF-UNet segmentation of oral ulcers achieves a DSC value of about 0.80 and the inference memory occupies only 2029 MB. The proposed method guarantees a low running load while maintaining a high-performance segmentation capability. The proposed Autooral dataset and code are available from  https://github.com/wurenkai/HF-UNet-and-Autooral-dataset .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分段任意模型(SAM),一般图像分割的基础模型,在许多自然图像分割任务中表现出令人印象深刻的零镜头性能。然而,SAM的性能在应用于医学图像时显著下降,主要是由于自然和医学图像领域之间的巨大差异。为了使SAM有效地适应医学图像,重要的是要纳入关键的三维信息,即,体积或时间知识,在微调期间。同时,我们的目标是充分利用SAM在其原始2D骨干中的预训练权重。在本文中,我们引入了一个与模态无关的SAM适应框架,命名为MA-SAM,适用于各种体积和视频医疗数据。我们的方法源于参数有效的微调策略,即仅更新一小部分权重增量,同时保留SAM的大部分预训练权重。通过将一系列3D适配器注入到图像编码器的变压器块中,我们的方法使预先训练的2D骨干能够从输入数据中提取三维信息。我们在五个医学图像分割任务上综合评估了我们的方法,通过跨CT使用11个公共数据集,MRI,和手术视频数据。值得注意的是,不使用任何提示,我们的方法始终优于各种最先进的3D方法,超过NNU-Net0.9%,2.6%,和9.9%的骰子用于CT多器官分割,MRI前列腺分割,和手术场景分割。我们的模型也展示了很强的泛化能力,并且在使用提示时擅长具有挑战性的肿瘤分割。我们的代码可在以下网址获得:https://github.com/cchen-cc/MA-SAM。
    The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM\'s performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM\'s pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM\'s pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,深度学习中的语义分割在医学图像分割中得到了广泛的应用,导致了众多模型的发展。卷积神经网络(CNN)在医学图像分析中取得了里程碑式的成就。特别是,基于U形结构和跳过连接的深度神经网络已广泛应用于各种医学图像任务中。U-Net的特点是其编码器-解码器架构和开创性的跳过连接,以及多尺度特征,作为许多修改的基本网络体系结构。但是U-Net不能完全利用来自解码器层中的编码器层的所有信息。U-Net++通过嵌套和密集的跳过连接连接不同维度的中间参数。然而,它只能缓解不能充分利用编码器信息的缺点,并且会大大增加模型参数。在本文中,提出了一种新颖的BFNet,以在解码器的每一层利用来自编码器的所有特征图,并与编码器的当前层重新连接。这允许解码器更好地学习分割目标的位置信息,并且改进编码器的当前层中的边界信息和抽象语义的学习。我们提出的方法在精度上有了显著的提高,为1.4%。除了提高准确性,我们提出的BFNet也减少了网络参数。我们提出的所有优点都在我们的数据集上得到了证明。我们还讨论了不同的损失函数如何影响该模型以及一些可能的改进。
    In recent years, semantic segmentation in deep learning has been widely applied in medical image segmentation, leading to the development of numerous models. Convolutional Neural Network (CNNs) have achieved milestone achievements in medical image analysis. Particularly, deep neural networks based on U-shaped architectures and skip connections have been extensively employed in various medical image tasks. U-Net is characterized by its encoder-decoder architecture and pioneering skip connections, along with multi-scale features, has served as a fundamental network architecture for many modifications. But U-Net cannot fully utilize all the information from the encoder layer in the decoder layer. U-Net++ connects mid parameters of different dimensions through nested and dense skip connections. However, it can only alleviate the disadvantage of not being able to fully utilize the encoder information and will greatly increase the model parameters. In this paper, a novel BFNet is proposed to utilize all feature maps from the encoder at every layer of the decoder and reconnects with the current layer of the encoder. This allows the decoder to better learn the positional information of segmentation targets and improves learning of boundary information and abstract semantics in the current layer of the encoder. Our proposed method has a significant improvement in accuracy with 1.4 percent. Besides enhancing accuracy, our proposed BFNet also reduces network parameters. All the advantages we proposed are demonstrated on our dataset. We also discuss how different loss functions influence this model and some possible improvements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SwinTransformer是所有尝试中的一项重要工作,旨在降低变压器的计算复杂度,同时保持其在计算机视觉中的出色性能。基于窗口的补丁自注意可以使用图像特征的本地连接,和移位的基于窗口的补丁自注意使得能够在整个图像范围内的不同补丁之间进行信息的通信。通过深入研究不同移位窗口大小对贴片信息传播效率的影响,本文提出了一种双尺度变压器双尺寸移位窗口注意方法。所提出的方法超越了基于CNN的方法,如U-Net,AttenU-Net,ResU-Net,CE-Net大幅增长(约3%~6%增长),并且优于基于变压器的模型单尺度双变压器(SwinT)(大约增加1%),在Kvasir-SEG的数据集上,ISIC2017,MICCAIEndoVisSub仪器和CadVesSet。实验结果验证了所提出的双尺度移位窗口注意力有利于补丁信息的交流,并且可以将分割结果增强到最先进的水平。我们还对移位窗口大小对信息流效率的影响进行了消融研究,并验证了双尺度移位窗口注意力是优化的网络设计。我们的研究强调了网络结构设计对视觉性能的重大影响,为基于变压器体系结构的网络设计提供有价值的见解。
    Swin Transformer is an important work among all the attempts to reduce the computational complexity of Transformers while maintaining its excellent performance in computer vision. Window-based patch self-attention can use the local connectivity of the image features, and the shifted window-based patch self-attention enables the communication of information between different patches in the entire image scope. Through in-depth research on the effects of different sizes of shifted windows on the patch information communication efficiency, this article proposes a Dual-Scale Transformer with double-sized shifted window attention method. The proposed method surpasses CNN-based methods such as U-Net, AttenU-Net, ResU-Net, CE-Net by a considerable margin (Approximately 3% ∼ 6% increase), and outperforms the Transformer based models single-scale Swin Transformer(SwinT)(Approximately 1% increase), on the datasets of the Kvasir-SEG, ISIC2017, MICCAI EndoVisSub-Instrument and CadVesSet. The experimental results verify that the proposed dual scale shifted window attention benefits the communication of patch information and can enhance the segmentation results to state of the art. We also implement an ablation study on the effect of the shifted window size on the information flow efficiency and verify that the dual-scale shifted window attention is the optimized network design. Our study highlights the significant impact of network structure design on visual performance, providing valuable insights for the design of networks based on Transformer architectures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:作为舌头的重要组成部分,舌苔与不同疾病密切相关,具有重要的诊断价值。本研究旨在构建一个能够进行复杂舌苔分割的神经网络模型。解决了智能舌诊自动化中的舌苔分割问题。
    方法:这项工作提出了一种改进的TransUNet来分割舌苔。我们引入了一种转换器作为一种自我注意机制,以捕获编码器高层特征中的语义信息。同时,构造减法特征金字塔(SFP)和视觉区域增强器(VRE),以最大程度地减少由跳过连接传输的冗余信息,并改善编码器低级特征中的空间细节信息。
    结果:比较和消融实验结果表明,我们的模型的准确率为96.36%,精度为96.26%,骰子为96.76%,召回97.43%,和93.81%的IoU。与参考模型不同,我们的模型取得了最好的分割效果。
    结论:此处提出的改进的TransUNet可以实现复杂舌头图像的精确分割。这为舌苔图像的自动提取提供了一种有效的技术,有助于舌头诊断的自动化和准确性。
    BACKGROUND: As an important part of the tongue, the tongue coating is closely associated with different disorders and has major diagnostic benefits. This study aims to construct a neural network model that can perform complex tongue coating segmentation. This addresses the issue of tongue coating segmentation in intelligent tongue diagnosis automation.
    METHODS: This work proposes an improved TransUNet to segment the tongue coating. We introduced a transformer as a self-attention mechanism to capture the semantic information in the high-level features of the encoder. At the same time, the subtraction feature pyramid (SFP) and visual regional enhancer (VRE) were constructed to minimize the redundant information transmitted by skip connections and improve the spatial detail information in the low-level features of the encoder.
    RESULTS: Comparative and ablation experimental findings indicate that our model has an accuracy of 96.36%, a precision of 96.26%, a dice of 96.76%, a recall of 97.43%, and an IoU of 93.81%. Unlike the reference model, our model achieves the best segmentation effect.
    CONCLUSIONS: The improved TransUNet proposed here can achieve precise segmentation of complex tongue images. This provides an effective technique for the automatic extraction in images of the tongue coating, contributing to the automation and accuracy of tongue diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号