medical image segmentation

医学图像分割
  • 文章类型: Journal Article
    当前最先进的医学图像分割技术主要采用编码器-解码器架构。尽管它广泛使用,这种U形框架在通过简单的跳跃连接有效捕获多尺度特征方面表现出局限性。在这项研究中,我们进行了彻底的分析,以调查各种细分任务之间联系的潜在弱点,并提出了要考虑的潜在语义差距的两个关键方面:不同编码阶段的多尺度特征之间的语义差距以及编码器和解码器之间的语义差距。为了弥合这些语义鸿沟,我们介绍了一个新的分割框架,它包含一个双注意力转换器模块,用于捕获通道和空间关系,和解码器引导的重新校准注意模块,用于融合DAT令牌和解码器功能。这些模块建立了可学习连接的原则,解决了语义差距,导致了一种高性能的医学图像分割模型。此外,它为有效地将注意力机制纳入传统的基于卷积的架构提供了一个新的范例。综合实验结果表明,我们的模型达到了一致,显着增益和优于国家的最先进的方法与相对较少的参数。本研究通过提供更有效和高效的框架来解决当前编码器-解码器架构的局限性,为医学图像分割的进步做出了贡献。代码:https://github.com/McGregorWwww/UDTRANNet。
    Current state-of-the-art medical image segmentation techniques predominantly employ the encoder-decoder architecture. Despite its widespread use, this U-shaped framework exhibits limitations in effectively capturing multi-scale features through simple skip connections. In this study, we made a thorough analysis to investigate the potential weaknesses of connections across various segmentation tasks, and suggest two key aspects of potential semantic gaps crucial to be considered: the semantic gap among multi-scale features in different encoding stages and the semantic gap between the encoder and the decoder. To bridge these semantic gaps, we introduce a novel segmentation framework, which incorporates a Dual Attention Transformer module for capturing channel-wise and spatial-wise relationships, and a Decoder-guided Recalibration Attention module for fusing DAT tokens and decoder features. These modules establish a principle of learnable connection that resolves the semantic gaps, leading to a high-performance segmentation model for medical images. Furthermore, it provides a new paradigm for effectively incorporating the attention mechanism into the traditional convolution-based architecture. Comprehensive experimental results demonstrate that our model achieves consistent, significant gains and outperforms state-of-the-art methods with relatively fewer parameters. This study contributes to the advancement of medical image segmentation by offering a more effective and efficient framework for addressing the limitations of current encoder-decoder architectures. Code: https://github.com/McGregorWwww/UDTransNet.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    医学图像分析在临床诊断中起着重要的作用。在本文中,我们研究了最近在医学图像上的分段任意模型(SAM),并报告九种医学图像分割基准的定量和定性零镜头分割结果,涵盖各种成像模式,如光学相干断层扫描(OCT),磁共振成像(MRI),和计算机断层扫描(CT),以及不同的应用,包括皮肤病学,眼科,和放射学。这些基准具有代表性,通常用于模型开发。我们的实验结果表明,虽然SAM在一般领域的图像上表现出显著的分割性能,对于分布外的图像,其零镜头分割能力仍然受到限制,例如,医学图像。此外,SAM在不同的未见过的医学领域中表现出不一致的零镜头分割性能。对于某些结构化目标,例如,血管,SAM的零射分割完全失败。相比之下,用少量数据对其进行简单的微调可以显着提高分割质量,显示了使用微调SAM实现精确医学图像分割以进行精确诊断的巨大潜力和可行性。我们的研究表明,通用视觉基础模型在医学成像上的多功能性,和他们的巨大潜力,以实现所需的性能,通过微调,并最终解决与访问大型和多样化的医疗数据集以支持临床诊断相关的挑战。
    Medical image analysis plays an important role in clinical diagnosis. In this paper, we examine the recent Segment Anything Model (SAM) on medical images, and report both quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks, covering various imaging modalities, such as optical coherence tomography (OCT), magnetic resonance imaging (MRI), and computed tomography (CT), as well as different applications including dermatology, ophthalmology, and radiology. Those benchmarks are representative and commonly used in model development. Our experimental results indicate that while SAM presents remarkable segmentation performance on images from the general domain, its zero-shot segmentation ability remains restricted for out-of-distribution images, e.g., medical images. In addition, SAM exhibits inconsistent zero-shot segmentation performance across different unseen medical domains. For certain structured targets, e.g., blood vessels, the zero-shot segmentation of SAM completely failed. In contrast, a simple fine-tuning of it with a small amount of data could lead to remarkable improvement of the segmentation quality, showing the great potential and feasibility of using fine-tuned SAM to achieve accurate medical image segmentation for a precision diagnostics. Our study indicates the versatility of generalist vision foundation models on medical imaging, and their great potential to achieve desired performance through fine-turning and eventually address the challenges associated with accessing large and diverse medical datasets in support of clinical diagnostics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号