host-pathogen interactions

宿主 - 病原体相互作用
  • 文章类型: Journal Article
    当病原体入侵植物时,它遇到了不同的微生物群,一些成员有助于植物宿主的健康和生长。到目前为止,病原体和植物微生物群之间相互作用的相关性知之甚少;然而,新的证据表明,病原体在入侵过程中在塑造宿主微生物组方面发挥着重要作用。这篇综述旨在总结最近的发现,这些发现记录了丝状病原体入侵植物组织期间微生物群落组成的变化。我们探索了植物病原体和宿主微生物群之间相互作用的已知机制,这些机制是这些变化的基础,特别是针对特定微生物产生的病原体编码性状。此外,我们讨论了当前策略的局限性,并阐明了研究丝状病原体与植物微生物组之间复杂相互作用网络的新观点。
    When a pathogen invades a plant, it encounters a diverse microbiota with some members contributing to the health and growth of the plant host. So far, the relevance of interactions between pathogens and the plant microbiota are poorly understood; however, new lines of evidence suggest that pathogens play an important role in shaping the microbiome of their host during invasion. This review aims to summarize recent findings that document changes in microbial community composition during the invasion of filamentous pathogens in plant tissues. We explore the known mechanisms of interaction between plant pathogens and the host microbiota that underlie these changes, particularly the pathogen-encoded traits that are produced to target specific microbes. Moreover, we discuss the limitations of current strategies and shed light on new perspectives to study the complex interaction networks between filamentous pathogens and the plant microbiome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    程序性细胞死亡(PCD)在维持人体消化道的正常结构和功能中起着至关重要的作用。幽门螺杆菌感染(H.幽门螺杆菌)是导致胃损伤的重要因素,促进Correa级联反应并加速从胃炎到胃癌的过渡。最近的研究表明,在幽门螺杆菌感染过程中,一些PCD信号通路异常激活,PCD的功能障碍被认为是胃癌发生发展的原因,并干扰治疗。随着H.pylori感染PCD研究的不断深入,探索幽门螺杆菌与机体在不同PCD通路中的相互作用机制,可能成为未来治疗幽门螺杆菌感染和幽门螺杆菌相关性胃癌的重要研究方向。此外,可以抑制或诱导PCD的生物活性化合物可以作为治疗这种疾病的关键要素。在这次审查中,我们简要描述了PCD的过程,探讨PCD信号通路与H.pylori感染或H.pylori相关性胃癌的作用机制,并总结了在此过程中可能在每个PCD途径中起治疗作用的活性分子,以期更全面地了解PCD在幽门螺杆菌感染中的作用。
    Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管需要有效治疗慢性呼吸道感染(通常由致病性生物膜引起),近几十年来,只有少数新的抗菌药物被推向市场。尽管不同的因素阻碍了抗菌药物候选药物从实验室到临床的成功发展,一个主要驱动因素是在临床前研究中使用预测不良的模型系统。为了弥合这个平移间隙,已经做出了巨大的努力来开发能够概括已知影响体内感染动力学和抗菌活性的气道微环境的关键方面的生理相关模型。我们提供了用于模拟慢性(生物膜相关)气道感染的最新细胞培养平台和离体模型的概述,包括气液接口,用旋转壁血管生物反应器获得的三维培养物,芯片上的肺和离体猪肺。我们的重点是通过描述受益于这些平台的研究来研究慢性细菌感染并探索新型抗生物膜策略,从而突出这些感染模型相对于标准(非生物)生物膜方法的优势。此外,我们讨论了仍然需要克服的挑战,以确保体内样感染模型在抗菌药物开发中的广泛应用,为未来的研究提出可能的方向。记住,没有一个单一的模型能够忠实地捕获(受感染的)气道的全部复杂性,我们强调知情的模型选择对于产生临床相关实验数据的重要性.
    Despite the need for effective treatments against chronic respiratory infections (often caused by pathogenic biofilms), only a few new antimicrobials have been introduced to the market in recent decades. Although different factors impede the successful advancement of antimicrobial candidates from the bench to the clinic, a major driver is the use of poorly predictive model systems in preclinical research. To bridge this translational gap, significant efforts have been made to develop physiologically relevant models capable of recapitulating the key aspects of the airway microenvironment that are known to influence infection dynamics and antimicrobial activity in vivo In this review, we provide an overview of state-of-the-art cell culture platforms and ex vivo models that have been used to model chronic (biofilm-associated) airway infections, including air-liquid interfaces, three-dimensional cultures obtained with rotating-wall vessel bioreactors, lung-on-a-chips and ex vivo pig lungs. Our focus is on highlighting the advantages of these infection models over standard (abiotic) biofilm methods by describing studies that have benefited from these platforms to investigate chronic bacterial infections and explore novel antibiofilm strategies. Furthermore, we discuss the challenges that still need to be overcome to ensure the widespread application of in vivo-like infection models in antimicrobial drug development, suggesting possible directions for future research. Bearing in mind that no single model is able to faithfully capture the full complexity of the (infected) airways, we emphasise the importance of informed model selection in order to generate clinically relevant experimental data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丝状病毒-宿主相互作用在病毒生命周期的所有阶段都起着重要作用。这里,我们鉴定了LATS1/2激酶和YAP,河马途径的关键组成部分,作为EBOV转录和出口的关键调节因子。具体来说,我们发现,当YAP被LATS1/2磷酸化时,它定位于细胞质(Hippo\"ON\"),在那里它隔离VP40以防止外溢。相比之下,当河马路径为“关闭”时,未磷酸化的YAP易位到细胞核,在那里它转录激活宿主基因并促进病毒外泄。我们的数据显示,LATS2间接调节丝状病毒VP40介导的出口通过磷酸化AMOTp130,病毒出口的正调节因子,但更令人惊讶的是,LATS1/2激酶通过磷酸化VP30直接调节EBOV转录,VP30是病毒转录的必需调节因子。总之,我们的发现强调了利用Hippo途径/丝状病毒轴来开发针对EBOV和相关丝状病毒的面向宿主的对策的潜力。
    Filovirus-host interactions play important roles in all stages of the virus lifecycle. Here, we identify LATS1/2 kinases and YAP, key components of the Hippo pathway, as critical regulators of EBOV transcription and egress. Specifically, we find that when YAP is phosphorylated by LATS1/2, it localizes to the cytoplasm (Hippo \"ON\") where it sequesters VP40 to prevent egress. In contrast, when the Hippo pathway is \"OFF\", unphosphorylated YAP translocates to the nucleus where it transcriptionally activates host genes and promotes viral egress. Our data reveal that LATS2 indirectly modulates filoviral VP40-mediated egress through phosphorylation of AMOTp130, a positive regulator of viral egress, but more surprisingly that LATS1/2 kinases directly modulate EBOV transcription by phosphorylating VP30, an essential regulator of viral transcription. In sum, our findings highlight the potential to exploit the Hippo pathway/filovirus axis for the development of host-oriented countermeasures targeting EBOV and related filoviruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Pentraxin3(PTX3),一个长五聚素和一个体液模式识别分子(PRM),已经证明对烟曲霉有保护作用,空气传播的人类真菌病原体。我们探索了它与烟曲霉的相互作用模式,以及由此产生的宿主免疫反应的影响。这里,我们证明了PTX3与烟曲霉以形态类型依赖性方式相互作用:(a)它通过氨基半乳糖半乳聚糖识别发芽的分生孢子,烟曲霉表面暴露的细胞壁多糖,(b)在休眠分生孢子中,表面蛋白作为弱PTX3配体,和(c)表面活性剂蛋白D(SP-D)和补体蛋白C1q和C3b,其他体液PRM,增强PTX3与休眠分生孢子的相互作用。SP-D,C3b或C1q调理的分生孢子刺激人初级免疫细胞释放促炎细胞因子和趋化因子。然而,随后PTX3与SP-D结合,C1q或C3b调理的分生孢子显着降低了促炎细胞因子/趋化因子的产生。与未调理的对应物相比,PTX3调理的发芽分生孢子还显着降低了促炎细胞因子/趋化因子的产生,同时增加了免疫细胞释放的IL-10(抗炎细胞因子)。总的来说,我们的研究表明,PTX3直接或通过与其他体液PRM相互作用识别烟曲霉,从而抑制有害的炎症。此外,侵袭性肺曲霉病(IPA)和COVID-19相关肺曲霉病(CAPA)患者血清中PTX3水平明显升高,支持以前在IPA患者中的观察,并表明它可能是由烟曲霉引起的这些病理状况的潜在小组生物标志物。
    Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    热休克反应在针对各种生物体的病毒的免疫防御中起关键作用。对模式生物的研究表明,在病毒暴露之前诱导这种反应可以增强宿主对感染的抵抗力,而不足的反应会使个体更容易受到影响。此外,病毒依靠热休克反应的成分来维持自身的稳定性,病毒感染可以提高植物的耐热性,在极端条件下给予感染者优势,帮助病毒复制和传播。这里,我们研究了线虫秀丽隐杆线虫及其天然病原体奥赛病毒(OrV)在热应激下的相互作用。我们发现OrV感染导致热应激相关基因的差异表达,感染人群对热休克的抵抗力增强。这种抗性与argonautesalg-1和alg-2的表达增加有关,这对于热休克后的存活和OrV复制至关重要。总的来说,我们的研究表明线虫和OrV之间存在环境依赖的互惠关系,有可能扩大动物的生态位,并为病毒提供额外的复制和适应极端条件的机会。
    The heat-shock response plays a key role in the immune defence against viruses across various organisms. Studies on model organisms have shown that inducing this response prior to viral exposure enhances host resistance to infections, while deficient responses make individuals more susceptible. Moreover, viruses rely on components of the heat-shock response for their own stability and viral infections improve thermal tolerance in plants, giving infected individuals an advantage in extreme conditions, which aids the virus in replication and transmission. Here, we examine the interaction between the nematode Caenorhabditis elegans and its natural pathogen the Orsay virus (OrV) under heat stress. We found that OrV infection leads to differential expression of heat-stress-related genes, and infected populations show increased resistance to heat-shock. This resistance correlates with increased expression of argonautes alg-1 and alg-2, which are crucial for survival after heat-shock and for OrV replication. Overall, our study suggests an environmental-dependent mutualistic relationship between the nematode and OrV, potentially expanding the animal\'s ecological niche and providing the virus with extra opportunities for replication and adaptation to extreme conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:由SARS-CoV-2引起的COVID-19的全球爆发已导致数百万人死亡。这种意想不到的紧急情况促使全球病毒学家更深入地研究宿主-病毒界面的复杂动态性,旨在识别抗病毒靶标并阐明严重疾病的宿主和病毒决定因素。
    目的:本研究旨在分析组蛋白去乙酰化酶6(HDAC6)在调节SARS-CoV-2感染中的作用。
    结果:在SARS-CoV-2感染后,在不同的SARS-CoV-2允许细胞系中观察到HDAC6表达逐渐增加。SARS-CoV-2核衣壳蛋白(N蛋白)被鉴定为负责上调HDAC6表达的主要病毒因子。使用shRNA或特异性抑制剂tubacin下调HDAC6导致病毒复制减少,表明其脱乙酰酶活性的前病毒作用。进一步的研究揭示了HDAC6与应激颗粒蛋白G3BP1和N蛋白在感染过程中的相互作用。发现HDAC6介导的SARS-CoV-2N蛋白的去乙酰化对其与G3BP1的关联至关重要。
    结论:这项研究为SARS-CoV-2感染过程中细胞质应激颗粒破坏的分子机制提供了有价值的见解,并强调了HDAC6在此过程中的重要性。
    BACKGROUND: The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease.
    OBJECTIVE: The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection.
    RESULTS: Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1.
    CONCLUSIONS: This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    猴痘(Mpox),由猴痘病毒(MPXV)引发的人畜共患疾病,构成重大威胁,因为它可能会传播,无法治愈。这项工作介绍了一种计算方法来预测MPXV感染期间的蛋白质-蛋白质相互作用(PPI)。目的是发现预期的药物靶标,并将当前潜在的食品和药物管理局(FDA)药物用于治疗目的。在这项工作中,合奏功能,包括2-5个节点的graphlet属性和基于蛋白质组成的特征用于深度学习(DL)模型来预测PPI。此处使用的技术在人类整合蛋白质-蛋白质相互作用参考(HIPPIE)和MPXV-HumanPPI数据集上都证明了PPI的优异预测性能。此外,MPXV的人蛋白靶标已被准确鉴定,同时检测可能的治疗靶标.此外,验证过程包括对潜在的FDA药物进行对接研究,如烟酰胺腺嘌呤二核苷酸和氢(NADH),福司替尼,谷氨酸,大麻二酚,铜,通过对药物再利用和MPXV药物共识评分(DCS)的研究,确定了药店中的锌。这是通过采用MPXV的主要晶体结构来实现的,现在可以访问。对接研究也得到了分子动力学(MD)模拟的支持。我们的研究结果强调了使用基于集成特征的PPI预测的有效性,以了解病毒感染中涉及的分子过程,并帮助开发用于新出现的传染病的再利用药物,例如,但不限于,水痘.此工作中使用的源代码和数据链接可在以下网址获得:https://github.com/CMATERJU-BIOINFO/In-Silico-Drug-Repurposing-Methodology-to-suggestest-Therapies-For-Emerging-Threats-like-Mpox。
    Monkeypox (Mpox), a zoonotic illness triggered by the monkeypox virus (MPXV), poses a significant threat since it may be transmitted and has no cure. This work introduces a computational method to predict Protein-Protein Interactions (PPIs) during MPXV infection. The objective is to discover prospective drug targets and repurpose current potential Food and Drug Administration (FDA) drugs for therapeutic purposes. In this work, ensemble features, comprising 2-5 node graphlet attributes and protein composition-based features are utilized for Deep Learning (DL) models to predict PPIs. The technique that is used here demonstrated an excellent prediction performance for PPI on both the Human Integrated Protein-Protein Interaction Reference (HIPPIE) and MPXV-Human PPI datasets. In addition, the human protein targets for MPXV have been identified accurately along with the detection of possible therapeutic targets. Furthermore, the validation process included conducting docking research studies on potential FDA drugs like Nicotinamide Adenine Dinucleotide and Hydrogen (NADH), Fostamatinib, Glutamic acid, Cannabidiol, Copper, and Zinc in DrugBank identified via research on drug repurposing and the Drug Consensus Score (DCS) for MPXV. This has been achieved by employing the primary crystal structures of MPXV, which are now accessible. The docking study is also supported by Molecular Dynamics (MD) simulation. The results of our study emphasize the effectiveness of using ensemble feature-based PPI prediction to understand the molecular processes involved in viral infection and to aid in the development of repurposed drugs for emerging infectious diseases such as, but not limited to, Mpox. The source code and link to data used in this work is available at: https://github.com/CMATERJU-BIOINFO/In-Silico-Drug-Repurposing-Methodology-To-Suggest-Therapies-For-Emerging-Threats-like-Mpox .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    B组链球菌(GBS)是一种革兰氏阳性病原体,通常定植于胃肠道和下部女性生殖道,但可引起新生儿败血症和肺炎,是新生儿脑膜炎的主要原因。尽管导致疾病的严重程度,GBS的发病机制尚不完全清楚,尤其是在感染的早期阶段。为了研究血流存活所必需的GBS因子,在菌血症感染模型中,我们使用我们团队先前开发的GBSmariner转座子突变文库进行了转座子(Tn)突变筛选.我们在628个基因中发现了显著不足的突变,这些突变有助于血液中的存活,包括那些编码已知的毒力因子,如胶囊,β-溶血素,和无机金属离子传输系统。大多数代表性不足的基因以前没有在GBS中进行过表征或研究,包括gloA和gloB,它们是与甲基乙二醛(MG)解毒有关的基因的同源物。MG是糖酵解的副产物和高反应性毒性醛,其在感染期间在免疫细胞中升高。这里,我们观察了多个GBS分离株的MG敏感性,并证实gloA有助于MG耐受和侵袭性GBS感染.我们特别表明,在存在中性粒细胞的情况下,gloA有助于GBS的存活,并且在小鼠中消耗中性粒细胞消除了gloA突变体的降低的存活和感染。GBS感染期间乙二醛酶途径的需求表明,MG解毒对于宿主-病原体相互作用期间的细菌存活很重要。
    在菌血症小鼠感染模型中对B组链球菌(GBS)的转座子突变体筛选揭示了已知对GBS存活重要的毒力因子,例如胶囊,β-溶血素/溶细胞素,和参与金属稳态的基因。还鉴定了许多未表征的因子,包括作为分解甲基乙二醛(MG)的代谢途径的一部分的基因。乙二醛酶途径是MG分解的最普遍的代谢途径,并且仅是使用乙二醛酶A(gloA)和B(gloB)酶的两步过程。MG是糖酵解的高反应性副产物,是我的大多数细胞。这里,我们表明,在GBS中,乙二醛酶途径中的第一个酶,由gloA编码,有助于MG抗性和血液存活。我们进一步证明,GloA有助于GBS在体外和体内对中性粒细胞的存活,因此,是侵袭性感染所需的重要毒力因子。
    Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for blood stream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 628 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the β-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirm that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基孔肯雅病毒(CHIKV)是一种单链RNA病毒,属于α病毒属,负责引起基孔肯雅热,一种虫媒病毒热。尽管进行了广泛的研究,CHIKV在宿主细胞内的致病机制尚不清楚.在这项研究中,使用计算机模拟方法预测CHIKV产生的微小RNA靶向与宿主细胞调控途径相关的宿主特异性基因.使用miRNAFold和VmirRNA结构网络服务器预测CHIKV的推定微RNA,并使用RNAfold进行二级结构预测。然后预测宿主特异性靶基因,和hub基因使用CytoHubba和模块选择通过MCODE鉴定。hub基因的功能注释揭示了它们与各种途径的关联,包括破骨细胞分化,神经活性配体-受体相互作用,mRNA监测。我们使用免费获得的数据集GSE49985来确定宿主特异性靶基因的表达水平,并发现两个基因,F盒和富含亮氨酸的重复蛋白16(FBXL16)和视黄酸受体α(RARA),被下调,虽然有四个基因,具有富含丝氨酸结构域1(RNPS1)的RNA结合蛋白,RNA解旋酶和ATP酶(UPF1),神经肽S受体1(NPSR1),和血管活性肠肽受体1(VIPR1),被上调。这些发现提供了与CHIKV感染相关的新型miRNA和hub基因的见解,并提出了治疗干预的潜在靶标。这些靶标的进一步实验验证可以导致CHIKV介导的疾病的有效治疗的发展。
    Chikungunya virus (CHIKV) is a single-stranded RNA virus belonging to the genus Alphavirus and is responsible for causing Chikungunya fever, a type of arboviral fever. Despite extensive research, the pathogenic mechanism of CHIKV within host cells remains unclear. In this study, an in-silico approach was used to predict that CHIKV produces micro-RNAs that target host-specific genes associated with host cellular regulatory pathways. Putative micro-RNAs of CHIKV were predicted using the miRNAFold and Vmir RNA structure web servers, and secondary structure prediction was performed using RNAfold. Host-specific target genes were then predicted, and hub genes were identified using CytoHubba and module selection through MCODE. Functional annotations of hub genes revealed their association with various pathways, including osteoclast differentiation, neuroactive ligand-receptor interaction, and mRNA surveillance. We used the freely available dataset GSE49985 to determine the level of expression of host-specific target genes and found that two genes, F-box and leucine-rich repeat protein 16 (FBXL16) and retinoic acid receptor alpha (RARA), were down-regulated, while four genes, RNA binding protein with serine-rich domain 1 (RNPS1), RNA helicase and ATPase (UPF1), neuropeptide S receptor 1 (NPSR1), and vasoactive intestinal peptide receptor 1 (VIPR1), were up-regulated. These findings provide insight into novel miRNAs and hub genes associated with CHIKV infection and suggest potential targets for therapeutic intervention. Further experimental validation of these targets could lead to the development of effective treatments for CHIKV-mediated diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号