biomolecules

生物分子
  • 文章类型: Journal Article
    在传感领域,高灵敏度传感器的发展,准确度,选择性,可持续性简单,低成本仍然是重点。在过去的几十年里,基于分子印迹技术的光学和电化学传感器由于上述优点而受到了极大的关注。分子印迹技术利用分子印迹聚合物(MIP)来模拟酶或抗体对靶分子的特异性识别能力。最近,基于MIP的传感器根植于信号放大技术已被用来提高分子检测水平和对环境污染物的定量能力,生物分子,治疗性化合物,细菌,和病毒。基于MIP的传感器涉及的信号放大技术主要涵盖核酸链扩增,酶催化级联,介绍高性能纳米材料,和快速的化学反应。放大的分析信号以电化学为中心,荧光,比色法,和表面增强拉曼技术,可以有效地实现对生物样品中一些低丰度靶标的测定。这篇综述重点介绍了基于分子印迹与各种信号放大策略集成的电化学/光学传感器的最新进展,以及它们对痕量生物分子研究的贡献。最后,提出了开发基于MIP的传感器多维输出信号以及引入多种信号放大策略的未来研究方向。
    In the field of sensing, the development of sensors with high sensitivity, accuracy, selectivity, sustainability, simplicity, and low cost remains a key focus. Over the past decades, optical and electrochemical sensors based on molecular imprinting techniques have garnered significant attention due to the above advantages. Molecular imprinting technology utilizes molecularly imprinted polymers (MIPs) to mimic the specific recognition capabilities of enzymes or antibodies for target molecules. Recently, MIP-based sensors rooting in signal amplification techniques have been employed to enhance molecular detection level and the quantitative ability for environmental pollutants, biomolecules, therapeutic compounds, bacteria, and viruses. The signal amplification techniques involved in MIP-based sensors mainly cover nucleic acid chain amplification, enzyme-catalyzed cascade, introduction of high-performance nanomaterials, and rapid chemical reactions. The amplified analytical signals are centered around electrochemical, fluorescence, colorimetric, and surface-enhanced Raman techniques, which can effectively realize the determination of some low-abundance targets in biological samples. This review highlights the recent advancements of electrochemical/optical sensors based on molecular imprinting integrated with various signal amplification strategies and their dedication to the study of trace biomolecules. Finally, future research directions on developing multidimensional output signals of MIP-based sensors and introducing multiple signal amplification strategies are proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症是一个全球性问题,因此正在做出各种努力。氧化铁被认为是生物医学领域中用于癌症治疗的重要生化试剂。海洋大型藻类介导的氧化铁,尤其是,磁铁矿(Fe3O4)纳米颗粒(NPs)由于其荧光和磁性而成为诊断和治疗癌症的潜在替代品。我们打算评估罗森维因的水提取物的可用性(R.intricata)在Fe3O4NP合成中,并研究其对人肝癌(Hep3B)和胰腺(PANC1)癌细胞的细胞毒性作用。在本研究中,R.intricata是从南安达曼沿海地区收集的,印度。利用R.intricata的水提物通过共沉淀法合成Fe3O4NP。从紫外可见漫反射光谱分析中,植物合成的Fe3O4NPs在400-600nm处显示出宽峰,验证了NPs的形成。荧光光谱中660nm处的能带边缘发射峰证实了Fe3O4NP中的量子限制。傅里叶变换红外光谱证实了R.intricata作为具有O-H等官能团的封端和还原剂的作用,C-H,C=O,N=O,C=C,C-O,C-N,和由氨基酸产生的C-S,多糖,脂肪烃,酯类,酰胺,木质素,烷烃,脂肪胺,和硫酸盐.物理化学性质,如微晶尺寸(14.36nm),流体动力学尺寸(84.6nm),不规则形态,元素组成,粒径(125nm),结晶度和饱和磁化强度(0.90007emu/g)由X射线衍射仪获得,动态光散射,扫描电子显微镜,能量色散X射线光谱仪,高分辨率透射电子显微镜,选定区域电子衍射和振动样品磁强计技术,分别。细胞活力显示出剂量依赖性的细胞毒性作用,并增强了针对Hep3B和PANC1癌细胞的凋亡。R.intricata提取物覆盖的Fe3O4NPs可能是用于癌症治疗和管理的最合适和有效的纳米材料。
    Cancer is a global issue and hence various efforts are being made. Iron oxide is considered a significant biochemical agent in the biomedical arena for cancer treatment. Marine macroalgae-mediated iron oxides especially, magnetite (Fe3O4) nanoparticles (NPs) are a prospective alternative to diagnose and treat cancer owing to their fluorescent and magnetic properties. We intend to appraise the usability of the aqueous extract of Rosenvingea intricata (R. intricata) in Fe3O4 NPs synthesis and to study their cytotoxic effects against human hepatocarcinoma (Hep3B) and pancreatic (PANC1) cancer cells. In the present study, R. intricata were collected from the coastal region of South Andaman, India. Aqueous extracts of R. intricata were utilized to synthesize Fe3O4 NPs via the co-precipitation method. Phycosynthesized Fe3O4 NPs exhibited wide peak at 400-600 nm from ultraviolet-visible diffused reflectance spectroscopic analysis which validated the formation of NPs. Band edge emission peak at 660 nm in fluorescent spectra confirmed the quantum confinement in Fe3O4 NPs. Fourier transform infrared spectroscopy confirmed the role of R. intricata as a capping and reducing agent with functional groups such as O-H, C-H, C=O, N=O, C=C, C-O, C-N, and C-S arising from amino acids, polysaccharides, aliphatic hydrocarbons, esters, amides, lignins, alkanes, aliphatic amines, and sulfates. Physicochemical properties such as crystallite size (14.36 nm), hydrodynamic size (84.6 nm), irregular morphology, elemental composition, particle size (125 nm), crystallinity, and saturation magnetization (0.90007 emu/g) were obtained from x-ray diffractometer, dynamic light scattering, scanning electron microscopy, energy dispersive x-ray spectrometer, high-resolution transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer techniques, respectively. The cell viability showed dose-dependent cytotoxic effects and enhanced the apoptosis against Hep3B and PANC1 cancer cells. R. intricata extract capped Fe3O4 NPs could be the most appropriate and effective nanomaterial for cancer treatment and management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抗菌材料的设计和优化(聚合物,生物分子,或纳米复合材料)可以通过分子动力学(MD)等计算方法显著提高,这提供了对聚合物基质内抗菌剂的相互作用和稳定性的见解,和机器学习(ML)或实验设计(DOE),预测和优化抗菌功效和材料性能。这些创新不仅提高了开发抗菌聚合物的效率,而且能够创造出具有定制性能的材料,以满足特定的应用需求。确保安全和长寿在他们的使用。因此,本文将介绍抗菌聚合物的合成和应用中采用的计算方法,生物分子,和纳米复合材料。通过利用先进的计算技术,如MD,ML,或者DOE,在抗菌材料的设计和优化方面取得了重大进展。对最新进展的全面审查,将讨论最相关的方法论的亮点,对最先进的材料科学的贡献,以及该领域的未来方向将被预见。最后,未来的可能性和机会将来自当前最先进的方法,提供有关高分子科学和新型材料工程的潜在发展的观点。
    The design and optimization of antimicrobial materials (polymers, biomolecules, or nanocomposites) can be significantly advanced by computational methodologies like molecular dynamics (MD), which provide insights into the interactions and stability of the antimicrobial agents within the polymer matrix, and machine learning (ML) or design of experiment (DOE), which predicts and optimizes antimicrobial efficacy and material properties. These innovations not only enhance the efficiency of developing antimicrobial polymers but also enable the creation of materials with tailored properties to meet specific application needs, ensuring safety and longevity in their usage. Therefore, this paper will present the computational methodologies employed in the synthesis and application of antimicrobial polymers, biomolecules, and nanocomposites. By leveraging advanced computational techniques such as MD, ML, or DOE, significant advancements in the design and optimization of antimicrobial materials are achieved. A comprehensive review on recent progress, together with highlights of the most relevant methodologies\' contributions to state-of-the-art materials science will be discussed, as well as future directions in the field will be foreseen. Finally, future possibilities and opportunities will be derived from the current state-of-the-art methodologies, providing perspectives on the potential evolution of polymer science and engineering of novel materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过局部施用生物功能分子增强正畸牙齿移动(OTM)变得越来越重要,特别是对于寻求审美和功能改善的成年患者。这篇全面的系统综述分析了各种生物功能分子在调节OTM中的功效,着眼于管理方法及其可行性,特别是考虑到局部应用的潜力。在多个数据库中进行的搜索产生了36篇实验人类和动物OTM模型的原始文章,研究了能够干扰正畸治疗期间引起牙齿移动的生化反应的生物功能分子,通过它们对骨代谢的影响加速OTM速率(骨化三醇,前列腺素,重组人松弛素,RANKL和RANKL表达质粒,生长因子,PTH,骨钙蛋白,维生素C和E,生物相容性还原氧化石墨烯,外源性甲状腺素,硬化蛋白,一种特定的EP4激动剂(ONO-AE1-329),角叉菜胶,和草药提取物)。结果表明,在加速OTM方面具有可变的功效,骨化三醇,前列腺素(PGE1和PGE2)RANKL,生长因子,和PTH,其中,显示出有希望的结果。PGE1,PGE2和骨化三醇实验在人类和动物研究中具有统计学意义,而其他分子只接受动物试验,它们可以在未来被验证为人类使用。值得注意的是,只有一项动物研究探索了局部给药,这也表明了未来的研究方向。这篇综述得出结论,虽然某些生物功能分子显示出OTM增强的潜力,证据不是确定的。开发适合人类使用的局部制剂可以提供一种对患者友好的注射替代方案,强调舒适性和成本效益。未来的研究应该集中在克服目前的方法学局限性和推进转化研究,以证实这些生物分子在临床正畸实践中的有效性和安全性。
    Enhancement of orthodontic tooth movement (OTM) through local administration of biofunctional molecules has become increasingly significant, particularly for adult patients seeking esthetic and functional improvements. This comprehensive systematic review analyzes the efficacy of various biofunctional molecules in modulating OTM, focusing on the method of administration and its feasibility, especially considering the potential for topical application. A search across multiple databases yielded 36 original articles of experimental human and animal OTM models, which examined biofunctional molecules capable of interfering with the biochemical reactions that cause tooth movement during orthodontic therapy, accelerating the OTM rate through their influence on bone metabolism (Calcitriol, Prostaglandins, Recombinant human Relaxin, RANKL and RANKL expression plasmid, growth factors, PTH, osteocalcin, vitamin C and E, biocompatible reduced graphene oxide, exogenous thyroxine, sclerostin protein, a specific EP4 agonist (ONO-AE1-329), carrageenan, and herbal extracts). The results indicated a variable efficacy in accelerating OTM, with Calcitriol, Prostaglandins (PGE1 and PGE2), RANKL, growth factors, and PTH, among others, showing promising outcomes. PGE1, PGE2, and Calcitriol experiments had statistically significant outcomes in both human and animal studies and, while other molecules underwent only animal testing, they could be validated in the future for human use. Notably, only one of the animal studies explored topical administration, which also suggests a future research direction. This review concluded that while certain biofunctional molecules demonstrated potential for OTM enhancement, the evidence is not definitive. The development of suitable topical formulations for human use could offer a patient-friendly alternative to injections, emphasizing comfort and cost-effectiveness. Future research should focus on overcoming current methodological limitations and advancing translational research to confirm these biomolecules\' efficacy and safety in clinical orthodontic practice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为细胞膜一部分的生物分子的动态监测通常构成挑战。电化学发光(ECL)生物传感器组件提供了关于显微成像的明显优点。因此,本文提出并分析了一种基于量子点的生物传感器组件。因此,特别注意作为细胞膜一部分的生物分子。此外,本文介绍和分析了一种基于量子点的生物传感器组件,用于实现功能齐全的彩色ECL可视化系统,该系统允许准确可视化细胞和生物分子结构。相关的纳米发射器允许实现实时生物成像场景。因此,所提出的方法相对于生物分子的时间依赖性进化进行了全面评估。已经证明,传统上有问题的结构,就像细胞膜的生物分子一样,可以使用所提出的解决方案来研究和监控它们与时间相关的动态演化。报告的研究过程是在与专业生物医学工程公司合作的领域进行的,所描述的结果预计将基本上支持对生物分子时间依赖性动态演化的更好理解。
    The dynamic monitoring of biomolecules that are part of cell membranes generally constitutes a challenge. Electrochemiluminescence (ECL) biosensor assemblies provide clear advantages concerning microscopic imaging. Therefore, this paper proposes and analyzes a quantum dots-based biosensor assembly. Thus, particular attention is granted to biomolecules that are part of cell membranes. Additionally, this paper describes and analyzes a quantum dots-based biosensor assembly, which is used to implement a fully functional color ECL visualization system that allows for cellular and biomolecular structures to be accurately visualized. The related nano-emitter allows the implementation of real-time bioimaging scenarios. Consequently, the proposed approach is thoroughly evaluated relative to the time-dependent evolution of biomolecules. It has been demonstrated that traditionally problematic structures, like the biomolecules that are part of cell membranes, can be studied and monitored relative to their time-dependent dynamic evolution using the proposed solution. The reported research process has been conducted in the realm of cooperation with a specialized biomedical engineering company, and the described results are expected to substantially support a better understanding of the biomolecules\' time-dependent dynamic evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物生长和发育的最佳环境包含某些必需代谢产物。被称为“植物生物刺激剂”(PBs)的一大类代谢物包括生物分子,如蛋白质,碳水化合物,脂质,和其他与萜类相关的次级代谢产物,特定的含氮化合物,和苯环共轭化合物。生物分子的形成取决于生物和非生物因素,例如植物释放PB,动物,和微生物,或者它可能是由温度控制引起的,湿度,湿度和大气中的压力,在腐殖质(HSs)的情况下。了解相关生物体(可能是植物或其他植物)的基因组输出对于识别导致这些复杂化合物合成的潜在行为至关重要。为了实现可持续农业的目标,对PBs的详细研究至关重要,因为它们有助于提高农业经济作物的产量和其他生长模式。植物-土壤-微生物系统中的稳态调节人类和其他动物的生存是由植物生物刺激剂的作用介导的,被认为对植物生长至关重要。到目前为止,通过技术实现已经揭示了用于功能和调控的基因组大小和基因操纵子,但是仍然缺乏重要的基因注释,导致信息泄露的延迟。下一代测序技术,比如纳米孔,纳米球,和Illumina,在排除信息差距方面至关重要。这些技术进步极大地扩展了候选基因的开放。作为重要前体的次级代谢物需要在更广泛的范围内进行研究,以准确计算生化反应,发生在合成活细胞内外。本综述重点介绍了测序技术,为农业可持续性提供了机会产生的基础。
    The best environment for plant growth and development contains certain essential metabolites. A broad category of metabolites known as \"plant biostimulants\" (PBs) includes biomolecules such as proteins, carbohydrates, lipids, and other secondary metabolites related to groups of terpenes, specific nitrogen-containing compounds, and benzene ring-conjugated compounds. The formation of biomolecules depends on both biotic and abiotic factors, such as the release of PB by plants, animals, and microorganisms, or it can result from the control of temperature, humidity, and pressure in the atmosphere, in the case of humic substances (HSs). Understanding the genomic outputs of the concerned organism (may be plants or others than them) becomes crucial for identifying the underlying behaviors that lead to the synthesis of these complex compounds. For the purposes of achieving the objectives of sustainable agriculture, detailed research on PBs is essential because they aid in increasing yield and other growth patterns of agro-economic crops. The regulation of homeostasis in the plant-soil-microbe system for the survival of humans and other animals is mediated by the action of plant biostimulants, as considered essential for the growth of plants. The genomic size and gene operons for functional and regulation control have so far been revealed through technological implementations, but important gene annotations are still lacking, causing a delay in revealing the information. Next-generation sequencing techniques, such as nanopore, nanoball, and Illumina, are essential in troubleshooting the information gaps. These technical advancements have greatly expanded the candidate gene openings. The secondary metabolites being important precursors need to be studied in a much wider scale for accurate calculations of biochemical reactions, taking place inside and outside the synthesized living cell. The present review highlights the sequencing techniques to provide a foundation of opportunity generation for agricultural sustainability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Wnts是脂质修饰的糖蛋白,在胚胎发育和成人稳态中起关键作用。Wnt信号传导在许多癌症中失调,并且临床前数据显示靶向Wnt生物合成和分泌在Wnt成瘾的癌症中可以是有效的。称为Wnless(WLS/Evi)的完整膜蛋白对于Wnt分泌是必需的。然而,到目前为止,WLS仍未被麻醉。与WNT8A复合的WLS的低温-EM结构表明WLS具有可成药的G蛋白偶联受体(GPCR)结构域。使用主动学习/滑行,我们从含有近5亿种化合物的Enamine的REAL350/3铅样文库中进行了超大规模虚拟筛选。在基于细胞的Wnt报告基因和其他功能测定中按需合成后检查68个命中。ETC-451是一种潜在的一流WLS抑制剂。ETC-451阻断WLS-WNT3A相互作用并降低Wnt成瘾胰腺癌细胞系增殖。当前命中为靶向WLS的进一步结构或基于配体的药物发现提供了起始化学支架。
    Wnts are lipid-modified glycoproteins that play key roles in both embryonic development and adult homeostasis. Wnt signaling is dysregulated in many cancers and preclinical data shows that targeting Wnt biosynthesis and secretion can be effective in Wnt-addicted cancers. An integral membrane protein known as Wntless (WLS/Evi) is essential for Wnt secretion. However, WLS remains undrugged thus far. The cryo-EM structure of WLS in complex with WNT8A shows that WLS has a druggable G-protein coupled receptor (GPCR) domain. Using Active Learning/Glide, we performed an ultra-large scale virtual screening from Enamine\'s REAL 350/3 Lead-Like library containing nearly 500 million compounds. 68 hits were examined after on-demand synthesis in cell-based Wnt reporter and other functional assays. ETC-451 emerged as a potential first-in-class WLS inhibitor. ETC-451 blocked WLS-WNT3A interaction and decreased Wnt-addicted pancreatic cancer cell line proliferation. The current hit provides a starting chemical scaffold for further structure or ligand-based drug discovery targeting WLS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米机械传感器,由于它们的体积小和对环境的高灵敏度,对各种传感应用具有重要的前景。这些传感器能够快速,高度敏感,通过利用纳米机械谐振器的频移来选择性检测生物和生物化学实体以及质谱。纳米机械系统已用于测量细胞和生物分子的质量,并研究表面科学的基础,例如相变和扩散。这里,我们开发了一种方法,使用实验测量和数值模拟来探索纳米机械谐振器的特性,当检测实体被吸收在悬臂表面并量化质量时,密度,和吸附实体的杨氏模量。此外,基于这个提出的概念,我们提出了一种实验方法,用于测量分子和生物实体在其生理环境中的质量。这种方法可以在预测用生物捕获分子功能化的生物纳米机电谐振器的行为中找到应用。以及无标签,非功能化的微/纳米级生物传感和活生物实体的质谱。
    Nanomechanical sensors, due to their small size and high sensitivity to the environment, hold significant promise for various sensing applications. These sensors enable rapid, highly sensitive, and selective detection of biological and biochemical entities as well as mass spectrometry by utilizing the frequency shift of nanomechanical resonators. Nanomechanical systems have been employed to measure the mass of cells and biomolecules and study the fundamentals of surface science such as phase transitions and diffusion. Here, we develop a methodology using both experimental measurements and numerical simulations to explore the characteristics of nanomechanical resonators when the detection entities are absorbed on the cantilever surface and quantify the mass, density, and Young\'s modulus of adsorbed entities. Moreover, based on this proposed concept, we present an experimental method for measuring the mass of molecules and living biological entities in their physiological environment. This approach could find applications in predicting the behavior of bionanoelectromechanical resonators functionalized with biological capture molecules, as well as in label-free, nonfunctionalized micro/nanoscale biosensing and mass spectrometry of living bioentities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    先天性心脏病(CHD)是最常见的出生缺陷,通常在孩子的第一个生日之前需要进行侵入性手术。目前在CHD手术中使用的材料缺乏生长能力,改造,并再生。为了解决这些限制,3D生物打印是一种新兴的工具,能够根据患者自己的成像数据创建量身定制的结构,一旦植入冠心病儿童,就能够进行生长和重塑。它有可能将多种生物墨水与几种细胞类型和生物分子整合在3D生物打印的构建体中,这些构建体表现出良好的结构保真度。稳定性,和机械完整性。这篇综述概述了CHD以及3D生物打印技术的最新进展,这些技术在CHD的治疗中具有潜在的用途。此外,根据其化学性质选择合适的生物材料,物理,和进一步操纵,以适应其应用的生物学特性也进行了讨论。简要概述了由各种生物材料组成的生物墨水制剂的介绍,重点是多种细胞类型和生物分子。还总结了预制3D生物打印结构的血管发生和血管生成以及新型4D打印技术。最后,我们讨论了3D生物打印技术在冠心病治疗中的一些限制以及我们对未来方向的看法.
    Congenital heart disease (CHD) is the most common birth defect, requiring invasive surgery often before a child\'s first birthday. Current materials used during CHD surgery lack the ability to grow, remodel, and regenerate. To solve those limitations, 3D bioprinting is an emerging tool with the capability to create tailored constructs based on patients\' own imaging data with the ability to grow and remodel once implanted in children with CHD. It has the potential to integrate multiple bioinks with several cell types and biomolecules within 3D-bioprinted constructs that exhibit good structural fidelity, stability, and mechanical integrity. This review gives an overview of CHD and recent advancements in 3D bioprinting technologies with potential use in the treatment of CHD. Moreover, the selection of appropriate biomaterials based on their chemical, physical, and biological properties that are further manipulated to suit their application are also discussed. An introduction to bioink formulations composed of various biomaterials with emphasis on multiple cell types and biomolecules is briefly overviewed. Vasculogenesis and angiogenesis of prefabricated 3D-bioprinted structures and novel 4D printing technology are also summarized. Finally, we discuss several restrictions and our perspective on future directions in 3D bioprinting technologies in the treatment of CHD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号