Sulfonium Compounds

  • 文章类型: Journal Article
    海洋浮游捕食者-猎物的相互作用发生在微尺度的海景中,扩散的化学物质可以作为增强或阻止捕食的趋化线索,或者作为补充猎物摄取的基本资源。浮游植物渗透物二甲基磺丙酸酯(DMSP)及其降解产物二甲基硫醚(DMS)和丙烯酸酯是普遍存在的具有高趋化潜力的化合物,但是,关于它们是否充当放牧增强剂或威慑剂的争议由来已久。这里,我们研究了三种草食性鞭毛藻对点源的趋化反应,溶解的DMSP的微观梯度,DMS,和丙烯酸酯。我们没有发现丙烯酸酯是趋化性驱避剂的证据,并且观察到DMS的吸引子作用较弱。DMSP表现为一种强大的化学引诱物,其通过影响游泳方式和聚集而促进放牧的潜力取决于放牧者的摄食方式和掺入DMSP的能力。我们的研究表明,除非捕食模型纳入趋化性驱动的搜索和猎物的发现,否则捕食模型将无法预测放牧的影响。
    Marine planktonic predator-prey interactions occur in microscale seascapes, where diffusing chemicals may act either as chemotactic cues that enhance or arrest predation, or as elemental resources that are complementary to prey ingestion. The phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) and its degradation products dimethylsulfide (DMS) and acrylate are pervasive compounds with high chemotactic potential, but there is a longstanding controversy over whether they act as grazing enhancers or deterrents. Here, we investigated the chemotactic responses of three herbivorous dinoflagellates to point-sourced, microscale gradients of dissolved DMSP, DMS, and acrylate. We found no evidence for acrylate being a chemotactic repellent and observed a weak attractor role of DMS. DMSP behaved as a strong chemoattractor whose potential for grazing facilitation through effects on swimming patterns and aggregation depends on the grazer\'s feeding mode and ability to incorporate DMSP. Our study reveals that predation models will fail to predict grazing impacts unless they incorporate chemotaxis-driven searching and finding of prey.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二甲基磺丙酸酯(DMSP)是一种丰富的海洋有机硫化合物,具有保护压力的作用,趋化性,养分和硫循环和气候调节。在这里,我们报告了一种双功能DMSP生物合成酶的发现,DsyGD,在根瘤菌synshinyii和一些以前不知道会产生DMSP的丝状蓝细菌的转氨途径中。DsyGD通过其N末端DsyG甲基硫代羟丁酸酯S-甲基转移酶和C末端DsyD二甲基磺羟丁酸酯脱羧酶结构域产生DMSP。系统发育上不同的DsyG样蛋白,叫做DSYE,在各种环境丰富的藻类中发现了具有甲基硫代羟基丁酸酯S-甲基转移酶活性,包括低的混合,高和以前未知的DMSP生产商。含有DSYE的藻类,特别是成华的pelagophyceae物种,与先前描述的DMSP合成基因相比,在全球范围内是更丰富的DMSP生产者。这项工作大大增加了预测的DMSP产生生物的数量和多样性,并强调了Pelagophyceae和其他含DSYE的藻类在全球DMSP生产和硫循环中的重要性。
    Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一系列单核和异核铂(II)和锌(II)配合物,具有4,4',4″-三叔丁基-2,2\':6\',合成并表征了2″-三联吡啶配体。[ZnCl2(terpytBu)](C1)的DNA和蛋白质结合特性,[{cis-PtCl(NH3)2(μ-吡嗪)ZnCl(terpytBu)}](ClO4)2(C2),[{反式-PtCl(NH3)2(μ-吡嗪)ZnCl(terpytBu)}](ClO4)2(C3),[{顺式-PtCl(NH3)2(μ-4,4'-联吡啶)ZnCl(terpytBu)}](ClO4)2(C4)和[{反式-PtCl(NH3)2(μ-4,4'-联吡啶)ZnCl(terpytBu)}](ClO4)2(C5)(其中terpytBu=4,4″-三叔丁基-2,2\':6\',2″-三吡啶),通过电子吸收进行研究,荧光光谱,和分子对接方法。与顺铂类似物相比,以转铂为特征的复合物表现出较低的Kb和Ksv常数值。Ksv值最低属于复合体C1,C4最高。分子对接研究表明,复合物C1与DNA的结合是由于范德华力,而C2-C5是由于常规的氢键和范德华力。测试的复合物对小鼠结直肠癌(CT26)表现出可变的细胞毒性,人类大肠癌(HCT116和SW480),和非癌小鼠间充质干细胞(mMSC)。特别是,与非癌性mMSC相比,单核C1复合物对癌细胞显示出明显的选择性。C1复合物显著诱导CT26细胞凋亡,有效地将细胞周期阻滞在G0/G1期,选择性下调细胞周期蛋白D
    A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4\',4″-tri-tert-butyl-2,2\':6\',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(μ-4,4\'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(μ-4,4\'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4\',4″-tri-tert-butyl-2,2\':6\',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲硫醇(MT)是海洋细菌在二甲基磺丙酸酯(DMSP)降解过程中产生的含硫化合物。MT的C-S键可以被甲硫醇氧化酶(MTO)裂解以释放硫原子。然而,裂开过程尚不清楚,硫产品的种类不确定。长期以来,人们一直认为MTO从MT产生硫化氢(H2S)。在这里,我们研究了红杆菌科的MTO,其成员是海洋环境中普遍存在的重要DMSP降解剂。我们从1,904个红杆菌科基因组中鉴定出57个MTO。这些MTO被分为两个主要的集群。簇1成员共享三个保守的半胱氨酸残基,而簇2成员含有一个保守的半胱氨酸残基。我们在体外和体内检查了三种代表性MTO的产物。它们都从MT中产生除H2S以外的硫烷硫。它们保守的半胱氨酸是形成MTO-S-S-CH3复合物的底物结合位点。这一发现澄清了MTO的硫产物,并启发了MTO催化过程。此外,这项研究将DMSP降解与硫烷硫代谢联系起来,填补了DMSP降解途径中的关键空白,并代表了海洋硫循环领域的新知识。重要意义这项研究推翻了长期以来的假设,即甲硫醇氧化酶(MTOs)裂解甲硫醇的C-S键,产生H2S和H2O2-前者是强还原剂,后者是强氧化剂。从化学的角度来看,这种反应很难发生。对三个有代表性的MTO的调查表明,硫烷硫(S0)是直接产物,并且没有产生H2O2。最后,MTOs的产物校正为S0和H2O。这一发现将二甲基磺丙酸酯(DMSP)降解与硫烷硫代谢联系起来,填补了DMSP降解途径中的关键空白,并代表了海洋硫循环领域的新知识。
    Methanethiol (MT) is a sulfur-containing compound produced during dimethylsulfoniopropionate (DMSP) degradation by marine bacteria. The C-S bond of MT can be cleaved by methanethiol oxidases (MTOs) to release a sulfur atom. However, the cleaving process remains unclear, and the species of sulfur product is uncertain. It has long been assumed that MTOs produce hydrogen sulfide (H2S) from MT. Herein, we studied the MTOs in the Rhodobacteraceae family-whose members are important DMSP degraders ubiquitous in marine environments. We identified 57 MTOs from 1,904 Rhodobacteraceae genomes. These MTOs were grouped into two major clusters. Cluster 1 members share three conserved cysteine residues, while cluster 2 members contain one conserved cysteine residue. We examined the products of three representative MTOs both in vitro and in vivo. All of them produced sulfane sulfur other than H2S from MT. Their conserved cysteines are substrate-binding sites in which the MTO-S-S-CH3 complex is formed. This finding clarified the sulfur product of MTOs and enlightened the MTO-catalyzing process. Moreover, this study connected DMSP degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field.
    OBJECTIVE: This study overthrows a long-time assumption that methanethiol oxidases (MTOs) cleave the C-S bond of methanethiol to produce both H2S and H2O2-the former is a strong reductant and the latter is a strong oxidant. From a chemistry viewpoint, this reaction is difficult to happen. Investigations on three representative MTOs indicated that sulfane sulfur (S0) was the direct product, and no H2O2 was produced. Finally, the products of MTOs were corrected to be S0 and H2O. This finding connected dimethylsulfoniopropionate (DMSP) degradation with sulfane sulfur metabolism, filling a critical gap in the DMSP degradation pathway and representing new knowledge in the marine sulfur cycle field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海洋细菌响应化学梯度而引导其运动的能力会影响物种间的相互作用,养分周转,和生态系统生产力。虽然许多细菌对小代谢物具有趋化性,海洋有机物主要由大分子和聚合物组成。然而,这些大分子的信号作用在很大程度上是未知的。使用原位和基于实验室的趋化性测定,我们表明,海洋细菌强烈地被丰富的藻类多糖海带多糖和藻酸盐所吸引。出乎意料的是,这些多糖比它们的寡糖和单糖成分引起更强的化学吸引力。此外,二甲基磺丙酸酯(DMSP)强烈增强了对海带蛋白的趋化性,另一种无处不在的藻类代谢产物.我们的结果表明,DMSP作为海洋细菌的甲基供体,增加他们的梯度检测能力,并促进他们获得多糖补丁。我们证明了海洋细菌能够对大量可溶性多糖具有很强的趋化性,并揭示了DMSP在增强这种吸引力方面的新生态作用。这些导航行为可能有助于聚合物在海洋中的快速周转,对海洋碳循环有重要影响。
    The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内生单胞菌通常是主要细菌,在珊瑚健康中非常重要。它们在二甲基磺基丙酸酯(DMSP)降解中的作用已成为十多年来讨论的主题。先前的研究发现,内生单胞菌通过dddD途径降解DMSP。这个过程释放二甲基硫醚,这对珊瑚应对热应力至关重要。然而,关于内生子科DMSP代谢的相关基因调控和代谢能力知之甚少。在这项研究中,我们分离了一种新型的内孢子单胞菌DMSP降解剂,并在两个系统发育上接近dddD的内孢子单胞菌物种中观察到了明显的DMSP代谢趋势,通过比较转录组学分析和使用纳米级二次离子光谱法对细菌细胞中DMSP稳定同位素的变化进行可视化来确认遗传。此外,我们发现,DMSP裂解酶在珊瑚Entozoicomonas中普遍存在,并且偏爱DddD裂解酶。我们推测,携带DMSP降解基因使Entozoicomonas能够成功地在全球范围内定居各种珊瑚物种。
    Endozoicomonas are often predominant bacteria and prominently important in coral health. Their role in dimethylsulfoniopropionate (DMSP) degradation has been a subject of discussion for over a decade. A previous study found that Endozoicomonas degraded DMSP through the dddD pathway. This process releases dimethyl sulfide, which is vital for corals coping with thermal stress. However, little is known about the related gene regulation and metabolic abilities of DMSP metabolism in Endozoicomonadaceae. In this study, we isolated a novel Endozoicomonas DMSP degrader and observed a distinct DMSP metabolic trend in two phylogenetically close dddD-harboring Endozoicomonas species, confirmed genetically by comparative transcriptomic profiling and visualization of the change of DMSP stable isotopes in bacterial cells using nanoscale secondary ion spectrometry. Furthermore, we found that DMSP cleavage enzymes are ubiquitous in coral Endozoicomonas with a preference for having DddD lyase. We speculate that harboring DMSP degrading genes enables Endozoicomonas to successfully colonize various coral species across the globe.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二甲基磺丙酸酯(DMSP)是地球上最丰富的有机硫分子之一,它们可以被海洋细菌分解代谢,通过裂解和/或去甲基化途径释放气候活性气体。海洋SAR92进化枝是沿海海水中丰富的寡营养型γ变形菌,但是它们分解DMSP的能力尚未测试。在这项研究中,从沿海海水中分离出的三种SAR92进化枝菌株和SAR92代表性菌株HTCC2207均显示出分解代谢DMSP作为碳源。所有SAR92进化枝菌株均表现出DMSP裂解酶活性,产生二甲基硫醚(DMS),其基因组编码已批准的DddDDMSP裂解酶。相比之下,只有HTCC2207和两个分离的菌株包含DMSP脱甲基酶dmdA基因,并且可能同时将DMSP脱甲基和裂解以产生甲硫醇(MeSH)和DMS。在具有dddD和dmdA的SAR92进化枝菌株中,这些基因的转录可被DMSP底物诱导。生物信息学分析表明,含有和转录DddD和DmdA的SAR92进化枝细菌在全球海洋中广泛分布,尤其是在极地地区。这项研究强调了SAR92的寡营养细菌进化枝作为DMSP的潜在重要分解者以及海洋环境中气候活性气体MeSH和DMS的来源,特别是在极地地区。海洋细菌对二甲基磺丙酸酯(DMSP)的重要代谢对全球硫循环和气候具有重要影响。然而,大多数贫营养细菌群的成员是否以及如何参与海洋环境中的DMSP代谢仍在很大程度上未知。在这项研究中,通过表征可培养的菌株,我们已经发现了SAR92进化枝的细菌,沿海海水中丰富的γ变形菌的贫营养群,可以通过DMSP裂解酶DddD介导的裂解途径和/或DMSP去甲基酶DmdA介导的去甲基化途径分解代谢DMSP,以产生气候活性气体二甲基硫醚和甲硫醇。此外,我们发现能够分解代谢DMSP的SAR92进化枝细菌广泛分布在全球海洋中。这些结果表明,SAR92进化枝细菌是潜在的重要的DMSP降解剂和海洋环境中的气候活性气体的来源,但却被忽视了。有助于更好地了解贫营养细菌在海洋DMSP降解中的作用和机制。
    OBJECTIVE: Catabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria has important impacts on the global sulfur cycle and climate. However, whether and how members of most oligotrophic bacterial groups participate in DMSP metabolism in marine environments remains largely unknown. In this study, by characterizing culturable strains, we have revealed that bacteria of the SAR92 clade, an abundant oligotrophic group of Gammaproteobacteria in coastal seawater, can catabolize DMSP through the DMSP lyase DddD-mediated cleavage pathway and/or the DMSP demethylase DmdA-mediated demethylation pathway to produce climate-active gases dimethylsulfide and methanethiol. Additionally, we found that SAR92 clade bacteria capable of catabolizing DMSP are widely distributed in global oceans. These results indicate that SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments that have been overlooked, contributing to a better understanding of the roles and mechanisms of the oligotrophic bacteria in oceanic DMSP degradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    盐沼是高效的环境,表现出高丰度的有机硫化合物。二甲基磺丙酸盐(DMSP)是由藻类大量生产的,植物,和细菌,是二甲基亚砜(DMSO)和二甲基硫醚(DMS)的潜在前体。DMSO作为无氧呼吸的电子受体,导致DMS形成,可以释放或可以被甲基营养的原核生物降解。这些反应的主要产物是具有正(CO2,CH4)或负(DMS)辐射强迫的痕量气体,对全球气候具有相反的影响。这里,我们研究了盐沼沉积物中的有机硫循环,并在缺氧分批实验中遵循DMSO的减少。与以前的海洋水域测量相比,盐沼沉积物中的DMSO浓度高达约300倍。在批量实验中,将DMSO还原成DMS,随后伴随CH4产生而消耗。原核生物群落和DMSO还原酶基因计数的变化表明,含有Dms型DMSO还原酶的生物体占主导地位(例如,脱硫巴贝,肠杆菌)。相比之下,当硫酸盐还原被钼酸盐抑制时,Tor型DMSO还原酶(例如,红霉素)增加。弧菌在两种处理中的相对丰度增加,属于弧菌的宏基因组组装基因组(MAG)具有编码DMSO还原酶亚基的所有基因。每次添加的DMSO的摩尔转化率<1.3CH4伴随着占优势的甲基营养产甲烷菌甲烷。mtsDH基因的富集,在分批孵育的宏基因组中编码DMS甲基转移酶表明它们在DMS依赖性产甲烷中的作用。隶属于甲烷菌的MAG携带了一整套编码甲基营养甲烷生成酶的基因。
    Saltmarshes are highly productive environments, exhibiting high abundances of organosulfur compounds. Dimethylsulfoniopropionate (DMSP) is produced in large quantities by algae, plants, and bacteria and is a potential precursor for dimethylsulfoxide (DMSO) and dimethylsulfide (DMS). DMSO serves as electron acceptor for anaerobic respiration leading to DMS formation, which is either emitted or can be degraded by methylotrophic prokaryotes. Major products of these reactions are trace gases with positive (CO2, CH4) or negative (DMS) radiative forcing with contrasting effects on the global climate. Here, we investigated organic sulfur cycling in saltmarsh sediments and followed DMSO reduction in anoxic batch experiments. Compared to previous measurements from marine waters, DMSO concentrations in the saltmarsh sediments were up to ~300 fold higher. In batch experiments, DMSO was reduced to DMS and subsequently consumed with concomitant CH4 production. Changes in prokaryotic communities and DMSO reductase gene counts indicated a dominance of organisms containing the Dms-type DMSO reductases (e.g., Desulfobulbales, Enterobacterales). In contrast, when sulfate reduction was inhibited by molybdate, Tor-type DMSO reductases (e.g., Rhodobacterales) increased. Vibrionales increased in relative abundance in both treatments, and metagenome assembled genomes (MAGs) affiliated to Vibrio had all genes encoding the subunits of DMSO reductases. Molar conversion ratios of <1.3 CH4 per added DMSO were accompanied by a predominance of the methylotrophic methanogens Methanosarcinales. Enrichment of mtsDH genes, encoding for DMS methyl transferases in metagenomes of batch incubations indicate their role in DMS-dependent methanogenesis. MAGs affiliated to Methanolobus carried the complete set of genes encoding for the enzymes in methylotrophic methanogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二甲基磺丙酸酯(DMSP)和相关有机硫化合物在全球硫循环中起着关键作用。已发现细菌是无头马里亚纳海沟(MT)的海水和表面沉积物中重要的DMSP生产者。然而,在马里亚纳海沟海底的详细细菌DMSP循环仍然未知。这里,使用依赖于培养和独立的方法研究了在10,816-m水深处获得的马里亚纳海沟沉积物核心(长度为7.5m)中的细菌DMSP循环潜力。DMSP含量沿沉积物深度波动,并在海底以下15至18厘米(cmbsf)达到最高浓度。dsyB是已知的显性DMSP合成基因,存在于0.36至1.19%的细菌中,并在先前未知的细菌DMSP合成组的宏基因组组装基因组(MAG)中鉴定,例如酸性微生物,Phycisphaerae,和氢化痴呆。dddP,dmdA,和dddX是主要的DMSP分解代谢基因。通过异源表达证实了从AnaerolinealMAG中检索到的DddP和DddX的DMSP分解代谢活性,表明此类厌氧菌可能参与DMSP分解代谢。此外,涉及从甲基巯基丙酸酯(MMPA)和二甲基硫醚(DMS)生产甲硫醇(MeSH)的基因,MeSH氧化,DMS生产非常丰富,表明不同有机硫化合物之间的活性转化。最后,大多数可培养的DMSP合成和分解代谢分离株没有已知的DMSP合成和分解代谢基因,放线菌可能是马里亚纳海沟沉积物中DMSP合成和分解代谢的重要类群。这项研究扩展了目前对马里亚纳海沟沉积物中DMSP循环的理解,并强调了在极端环境中发现新型DMSP代谢基因/途径的必要性。重要性二甲基磺丙酸酯(DMSP)是海洋中丰富的有机硫分子,是气候活跃的挥发性气体二甲基硫醚的前体。以前的研究主要集中在海水中的细菌DMSP循环,沿海沉积物,和地表沟槽沉积物样本,但是马里亚纳海沟(MT)海底沉积物中的DMSP代谢仍然未知。这里,我们描述了MT沉积物海底的DMSP含量和代谢细菌群。我们发现,MT中DMSP含量的垂直变化趋势与大陆架沉积物不同。尽管dsyB和dddP是MT沉积物中主要的DMSP合成和分解代谢基因,分别,宏基因组和培养方法都揭示了多个以前未知的DMSP代谢细菌组,尤其是厌氧细菌和放线菌。DMSP的主动转换,DMS,甲硫醇也可能存在于MT沉积物中。这些结果为理解MT中的DMSP循环提供了新的见解。
    Dimethylsulfoniopropionate (DMSP) and related organic sulfur compounds play key roles in global sulfur cycling. Bacteria have been found to be important DMSP producers in seawater and surface sediments of the aphotic Mariana Trench (MT). However, detailed bacterial DMSP cycling in the Mariana Trench subseafloor remains largely unknown. Here, the bacterial DMSP-cycling potential in a Mariana Trench sediment core (7.5 m in length) obtained at a 10,816-m water depth was investigated using culture-dependent and -independent methods. The DMSP content fluctuated along the sediment depth and reached the highest concentration at 15 to 18 cm below the seafloor (cmbsf). dsyB was the dominant known DMSP synthetic gene, existing in 0.36 to 1.19% of the bacteria, and was identified in the metagenome-assembled genomes (MAGs) of previously unknown bacterial DMSP synthetic groups such as Acidimicrobiia, Phycisphaerae, and Hydrogenedentia. dddP, dmdA, and dddX were the major DMSP catabolic genes. The DMSP catabolic activities of DddP and DddX retrieved from Anaerolineales MAGs were confirmed by heterologous expression, indicating that such anaerobic bacteria might participate in DMSP catabolism. Moreover, genes involved in methanethiol (MeSH) production from methylmercaptopropionate (MMPA) and dimethyl sulfide (DMS), MeSH oxidation, and DMS production were highly abundant, suggesting active conversions between different organic sulfur compounds. Finally, most culturable DMSP synthetic and catabolic isolates possessed no known DMSP synthetic and catabolic genes, and actinomycetes could be important groups involved in both DMSP synthesis and catabolism in Mariana Trench sediment. This study extends the current understanding of DMSP cycling in Mariana Trench sediment and highlights the need to uncover novel DMSP metabolic genes/pathways in extreme environments. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is an abundant organosulfur molecule in the ocean and is the precursor for the climate-active volatile gas dimethyl sulfide. Previous studies focused mainly on bacterial DMSP cycling in seawater, coastal sediment, and surface trench sediment samples, but DMSP metabolism in the Mariana Trench (MT) subseafloor sediments remains unknown. Here, we describe the DMSP content and metabolic bacterial groups in the subseafloor of the MT sediment. We found that the tendency for vertical variation of the DMSP content in the MT was distinct from that of the continent shelf sediment. Although dsyB and dddP were the dominant DMSP synthetic and catabolic genes in the MT sediment, respectively, both metagenomic and culture methods revealed multiple previously unknown DMSP metabolic bacterial groups, especially anaerobic bacteria and actinomycetes. The active conversion of DMSP, DMS, and methanethiol may also occur in the MT sediments. These results provide novel insights for understanding DMSP cycling in the MT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管在陆地植物中使用空气传播分子作为信息化学物质很常见,它没有被证明发生在海洋海藻的生态相关的背景下。像陆生植物一样,潮间带植物的一部分生命是在低潮时出现的,当它们被放牧或受到生理压力时,会将挥发性有机化合物(VOC)释放到空气中。我们假设海藻可以使用空气中的挥发性有机化合物作为信息化学物质,并通过上调基石防御代谢物来对它们做出反应,二甲基磺丙酸酯(DMSP)。我们进行了实验室和现场实验,其中Ulvafenestrata暴露于空气中的二甲基硫醚(DMS),当海藻被放牧或生理应激时释放的挥发性抗草食动物和抗氧化剂代谢产物。在实验室里,暴露于DMS的U.fenestrata的DMSP浓度高43-48%,相对于控件,暴露后6-9天。在田野里,11天后,顺风1m的DMS发射器的DMSP浓度比逆风海藻高19%。据我们所知,这是海洋植物利用受损时释放的空气分子引发防御性反应的首次演示。我们的研究表明,检测空气传播化合物的能力已经进化了多次或在陆生植物和绿藻分歧之前。
    Although the use of airborne molecules as infochemicals is common in terrestrial plants, it has not been shown to occur in an ecologically relevant context in marine seaweeds. Like terrestrial plants, intertidal plants spend part of their lives emersed at low tide and release volatile organic compounds (VOCs) into the air when they are grazed or physiologically stressed. We hypothesized seaweeds could use airborne VOCs as infochemicals and respond to them by upregulating a keystone defensive metabolite, dimethylsulfoniopropionate (DMSP). We conducted laboratory and field experiments in which Ulva fenestrata was exposed to airborne dimethyl sulfide (DMS), a volatile antiherbivore and antioxidant metabolite released when the seaweed is grazed or physiologically stressed. In the laboratory, U. fenestrata exposed to DMS had 43-48% higher DMSP concentrations, relative to controls, 6-9 days after exposure. In the field, U. fenestrata 1 m downwind of DMS emitters had 19% higher DMSP concentrations than upwind seaweeds after 11 days. To our knowledge, this is the first demonstration of a marine plant using an airborne molecule released when damaged to elicit defensive responses. Our study suggests that the ability to detect airborne compounds has evolved multiple times or before the divergence of terrestrial plants and green algae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号