Ribulose-Bisphosphate Carboxylase

核酮糖 - 二磷酸羧化酶
  • 文章类型: Journal Article
    对蚊子-植物摄食相互作用的更好理解可以揭示对病原体传播的生态动力学的见解。在野生疟疾媒介冈比亚按蚊和安。funestus小组在肯尼亚选定的旱地生态系统中进行了调查,我们发现使用生化冷蒽酮测试的植物摄食水平较低(2.8%),但通过针对叶绿体rbcL基因的DNA条形码发现了14倍(41%)的高比率。恶性疟原虫阳性与总糖水平降低或升高有关,并因蚊子而异。肠道分析显示,蚊子经常以豆科中的金合欢植物(〜89%)(主要是Vachelliatortilis)为食。化学分析显示1-octen-3-ol(29.9%)是主要的蚊子引诱剂,和糖葡萄糖,蔗糖,果糖,富含营养部分的牛糖和肌醇,金合欢树植物。An的营养分析。具有高植物摄食率的longipalpisC检测到的糖较少(葡萄糖,talose,果糖)与金合欢植物相比。这些结果表明(i)DNA条形码检测疟疾载体中植物摄食的敏感性,(ii)疟原虫感染状态会影响野生按蚊载体的能量储备,(iii)营养成分和嗅觉线索可能代表了各种疟疾载体首选的金合欢作为寄主植物的有效相关因素。结果与气味诱饵控制策略的开发有关,包括有吸引力的靶向糖饵。
    Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过基因工程技术增强作物光合作用为提高植物生产力提供了许多机会。主要方法包括优化光利用,增加细胞色素B6F复合物水平,改善碳固定。对Rubisco和光合电子传输链的修改是这些策略的核心。引入替代的光呼吸途径和增强碳酸酐酶活性可以进一步增加内部CO2浓度,从而提高光合效率。光合产生的糖的有效转运,由蔗糖转运蛋白管理,对植物生长也至关重要。此外,整合C4植物的基因,如磷酸烯醇丙酮酸羧化酶和NADP苹果酸酶,增加了Rubisco周围的二氧化碳浓度,减少光呼吸。靶向microRNAs和转录因子对于增加光合作用和植物生产力至关重要。特别是在压力条件下。这篇综述强调了潜在的生物靶标,其遗传修饰旨在改善光合作用和提高植物生产力,从而确定未来研究和开发的关键领域。
    Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    碳固定是塑造海洋生物的关键代谢功能,但是所涉及的基本分类学和功能多样性仅得到部分理解。利用针对海洋浮游生物的宏基因组资源,我们提供了一个可重复的机器学习框架,通过对环境气候的基因阅读计数的多输出回归,得出潜在的基因组功能生物地理学。利用塔拉海洋的海洋地图集,我们调查了全球海洋初级生产的基因组潜力。后者是通过核糖-1,5-双磷酸羧化酶/加氧酶(RUBISCO)进行的,通常与浮游生物中的碳浓缩机制有关,主要的海洋单细胞光合生物。我们表明,支持C4酶和RUBISCO的基因组潜力表现出强大的功能冗余和对热带贫营养水域的重要亲和力。这种冗余在分类学上是由中高纬度地区的哺乳动物科和原始植物科的优势构成的。这些发现增强了我们对微生物的功能和分类多样性与关键生物地球化学循环的环境驱动因素之间关系的理解。
    Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional diversity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplankton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the global ocean. The latter is performed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) and is often associated with carbon concentration mechanisms in piconanoplankton, major marine unicellular photosynthetic organisms. We show that the genomic potential supporting C4 enzymes and RUBISCO exhibits strong functional redundancy and important affinity toward tropical oligotrophic waters. This redundancy is taxonomically structured by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and high latitudes. These findings enhance our understanding of the relationship between functional and taxonomic diversity of microorganisms and environmental drivers of key biogeochemical cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    光呼吸,由Rubisco酶的氧合引起的,被认为是一个浪费的过程,因为它减少了光合碳的增加,但它也提供氨基酸,并参与改善压力。这里,我们表明,光呼吸活性的突然增加不仅减少了碳的获取和糖和淀粉的产生,但也影响了氨基酸的日动态,不明显参与该过程。基于昼夜代谢物谱的通量计算表明,从叶片中输出的脯氨酸增加,而天冬氨酸家庭成员积累。观察到谷氨酰胺合成酶/谷氨酰胺-氧代戊二酸氨基转移酶(GS/GOGAT)的循环反应中的周转急剧增加,可能是因为光呼吸中铵的产量增加。hpr1-1突变体,过氧化物酶体羟基丙酮酸还原酶缺陷,显示通量的实质性变化,导致从酮戊二酸到天冬氨酸氨基酸家族的转变。再加上大量的天冬酰胺出口,可以在芽和根之间交换丝氨酸。
    Photorespiration, caused by oxygenation of the enzyme Rubisco, is considered a wasteful process, because it reduces photosynthetic carbon gain, but it also supplies amino acids and is involved in amelioration of stress. Here, we show that a sudden increase in photorespiratory activity not only reduced carbon acquisition and production of sugars and starch, but also affected diurnal dynamics of amino acids not obviously involved in the process. Flux calculations based on diurnal metabolite profiles suggest that export of proline from leaves increases, while aspartate family members accumulate. An immense increase is observed for turnover in the cyclic reaction of glutamine synthetase/glutamine-oxoglutarate aminotransferase (GS/GOGAT), probably because of increased production of ammonium in photorespiration. The hpr1-1 mutant, defective in peroxisomal hydroxypyruvate reductase, shows substantial alterations in flux, leading to a shift from the oxoglutarate to the aspartate family of amino acids. This is coupled to a massive export of asparagine, which may serve in exchange for serine between shoot and root.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rubisco活性受到高度调节,并经常限制作物中的碳同化。在叶绿体中,各种代谢物可以通过结合其催化或变构位点来抑制或调节Rubisco活性,但是这项规定很复杂,仍然知之甚少。用大米Rubisco,我们表征了各种叶绿体代谢物的影响,这些叶绿体代谢物可以与Rubisco相互作用并调节其活性,包括光呼吸中间体,碳水化合物,氨基酸;以及已知抑制Rubisco活性的特定糖磷酸盐-CABP(2-羧基-D-阿拉伯糖醇1,5-二磷酸)和CA1P(2-羧基-D-阿拉伯糖醇1-磷酸)通过体外酶测定和分子对接分析。在饱和和极限浓度的Rubisco底物下,大多数代谢物都不会直接影响Rubisco的体外活性,CO2和RuBP(1,5-双磷酸核糖)。不出所料,在CABP和CA1P存在下,Rubisco活性受到强烈抑制。高生理相关浓度的羧化产物3-PGA(3-磷酸甘油酸)可使Rubisco活性降低多达30%。高浓度的光合衍生的磷酸己糖果糖6-磷酸(F6P)和葡萄糖6-磷酸(G6P)在有限的CO2和RuBP浓度下略微降低了Rubisco的活性。CO2和RuBP(在大气O2浓度下)的表观Vmax和Km的生化测量和对接相互作用分析表明,CABP/CA1P和3-PGA通过紧密和松散的结合来抑制Rubisco活性,分别,到其催化位点(即,与底物RuBP竞争)。这些发现将有助于新策略的设计和生化建模,以改善Rubisco活性的调节,并提高水稻碳同化的效率和可持续性。
    Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis. Most metabolites did not directly affect Rubisco in vitro activity under both saturating and limiting concentrations of Rubisco substrates, CO2 and RuBP (ribulose-1,5-bisphosphate). As expected, Rubisco activity was strongly inhibited in the presence of CABP and CA1P. High physiologically relevant concentrations of the carboxylation product 3-PGA (3-phosphoglyceric acid) decreased Rubisco activity by up to 30%. High concentrations of the photosynthetically derived hexose phosphates fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) slightly reduced Rubisco activity under limiting CO2 and RuBP concentrations. Biochemical measurements of the apparent Vmax and Km for CO2 and RuBP (at atmospheric O2 concentration) and docking interactions analysis suggest that CABP/CA1P and 3-PGA inhibit Rubisco activity by binding tightly and loosely, respectively, to its catalytic sites (i.e. competing with the substrate RuBP). These findings will aid the design and biochemical modelling of new strategies to improve the regulation of Rubisco activity and enhance the efficiency and sustainability of carbon assimilation in rice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    所有蓝细菌和一些化学自养细菌使用称为羧基体的专门蛋白质区室将CO2固定为糖。羧基体将酶Rubisco和碳酸酐酶包裹在一层壳蛋白内,以增加CO2浓度,从而通过Rubisco进行有效的碳固定。在羧基小体谱系中,一种名为CsoS2的无序且高度重复的蛋白质对于羧基体的形成和功能至关重要。没有它,细菌需要高二氧化碳才能生长。预测缺乏结构的蛋白质如何作为如此重要的细胞区室的建筑支架?在这项研究中,我们确定了CsoS2,VTG和Y重复序列中存在的关键残基,这是体内构建功能性α-羧基体所必需的。这些高度保守和重复的残基有助于CsoS2和壳蛋白之间的多价结合相互作用和相分离行为。我们还展示了CsoS2、Rubisco、和壳蛋白转化为球形缩合物,并显示了重建作为研究羧基小体生物发生的生化工具的实用性。数千种蛋白质的精确自组装对于羧基体的形成至关重要,了解这一过程可以使它们能够在替代生物宿主或工业过程中用作固定碳的有效工具。
    All cyanobacteria and some chemoautotrophic bacteria fix CO2 into sugars using specialized proteinaceous compartments called carboxysomes. Carboxysomes enclose the enzymes Rubisco and carbonic anhydrase inside a layer of shell proteins to increase the CO2 concentration for efficient carbon fixation by Rubisco. In the ⍺-carboxysome lineage, a disordered and highly repetitive protein named CsoS2 is essential for carboxysome formation and function. Without it, the bacteria require high CO2 to grow. How does a protein predicted to be lacking structure serve as the architectural scaffold for such a vital cellular compartment? In this study, we identify key residues present in the repeats of CsoS2, VTG and Y, which are necessary for building functional ⍺-carboxysomes in vivo. These highly conserved and repetitive residues contribute to the multivalent binding interaction and phase separation behavior between CsoS2 and shell proteins. We also demonstrate 3-component reconstitution of CsoS2, Rubisco, and shell proteins into spherical condensates and show the utility of reconstitution as a biochemical tool to study carboxysome biogenesis. The precise self-assembly of thousands of proteins is crucial for carboxysome formation, and understanding this process could enable their use in alternative biological hosts or industrial processes as effective tools to fix carbon.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质的赖氨酸乙酰化在植物中起着关键的调节功能。植物乙酰蛋白质组的研究取得了一些进展。然而,直到现在,关于雪花杜鹃花的数据很少。(R.chrysanthum)。我们分析了UV-B胁迫下小白草光合作用和抗逆性的分子机制。我们在UV-B胁迫下测量了小黄的叶绿素荧光参数,并进行了多组学分析。在测定叶绿素荧光参数的基础上,R.chrysanthumY(NO)(非光化学猝灭的量子产率)在UV-B胁迫下增加,表明植物受损,光合作用下降。在对乙酰化蛋白质组学数据的分析中,发现乙酰化蛋白参与多种生物过程。值得注意的是,乙酰化蛋白质在光合作用和碳固定途径中显著富集,表明赖氨酸乙酰化修饰在这些活动中具有重要作用。我们的发现表明R.chrysanthum在UV-B胁迫下减少了光合作用并损害了光系统,但是NPQ表明植物对UV-B具有抗性。乙酰化蛋白质组学显示,乙酰化修饰水平的上调或下调会改变蛋白质表达。卡尔文循环关键酶的乙酰化修饰(Rubisco,GAPDH)调节蛋白质表达,使Rubisco和GAPDH蛋白表达为显著不同的蛋白,这反过来又影响了R.chrysanthum的碳固定能力。因此,Rubisco和GAPDH在乙酰化修饰后显著差异表达,这影响了碳固定能力,从而使植物对UV-B胁迫具有抗性。赖氨酸乙酰化修饰通过调节光合作用和碳固定中关键酶的表达影响生物过程,使植物抵抗UV-B胁迫。
    Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV-B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)是负责植物中二氧化碳(CO2)固定的第一步的酶,通过1,5-二磷酸核酮糖的羧化进行。由于这种反应在农业和环境中的巨大重要性,对RuBisCO固定CO2的机制有相当大的兴趣。这里,据报道,菠菜RuBisCO的连续同步加速器晶体学结构为2.3µ分辨率。该结构与该酶的早期单晶X射线结构一致,该结果是进一步推动时间分辨连续同步加速器晶体学的良好起点,以便更好地了解反应机理。
    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme responsible for the first step of carbon dioxide (CO2) fixation in plants, which proceeds via the carboxylation of ribulose 1,5-biphosphate. Because of the enormous importance of this reaction in agriculture and the environment, there is considerable interest in the mechanism of fixation of CO2 by RuBisCO. Here, a serial synchrotron crystallography structure of spinach RuBisCO is reported at 2.3 Å resolution. This structure is consistent with earlier single-crystal X-ray structures of this enzyme and the results are a good starting point for a further push towards time-resolved serial synchrotron crystallography in order to better understand the mechanism of the reaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自我萎缩是地球上复杂生命的基础。这个过程的核心是rubisco——这种酶催化地球上几乎所有的碳固定。然而,到目前为止,只有一小部分rubisco多样性在动力学上得到了表征,驱动自然界中快速rubiscos进化的潜在生物因素仍不清楚。我们对超过100种细菌I型rubiscos进行了高通量动力学表征,自然界中最普遍的一组rubisco序列,揭示rubisco羧化速度的决定因素。我们表明,羧基小体CO2浓缩机制的存在与较快的rubiscos相关,中位速率高五倍。与之前的研究相比,我们发现,源自α-蓝细菌的rubiscos在I型酶中表现出最高的羧化率(≈10s-1中位数,而其他组中<7s-1)。我们的研究系统地揭示了与自然界中橡胶动力学变化相关的生物和环境特性。
    Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco\'s carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蓝细菌CO2浓缩机制(CCM)将全球相应比例的碳封存到生物圈中。蛋白质微室,称为羧基体,在CCM功能中发挥关键作用,容纳两种酶以增强CO2固定:碳酸酐酶(CA)和Rubisco。尽管它很重要,我们目前对在α-蓝细菌中发现的羧型CAs的理解,CsoSCA,仍然有限,特别是关于其活动的监管。这里,我们对蓝藻蓝藻的CsoSCA进行了结构和生化研究。PCC7001。我们的结果表明,CyanobiumCsoSCA被Rubisco底物核糖-1,5-双磷酸酯变构激活,并形成二聚体的六聚体三聚体。全面的系统发育和突变分析与仅在蓝细菌α-羧基体CA中出现的这种调节是一致的。这些发现阐明了α-羧基基因组CA的生物学相关寡聚状态,并增进了我们对这种全球优势谱系中光合作用调节的理解。
    Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号