Muscle Biology

肌肉生物学
  • 文章类型: Journal Article
    我们的研究是使用临床相关定义来表征C57BL/6J小鼠中的肌肉减少症,以研究潜在的分子机制。成年雄性(23-32月龄)和雌性(27-28月龄)C57BL/6J小鼠被分类为非,可能-,或基于对握力的评估而减少肌肉,肌肉质量,和跑步机运行时间,使用低于年轻同行平均值的2个SDs作为截止点。在23-26个月大的雄性小鼠中发现9%-22%的肌肉减少症患病率,与年龄相关的肌肉功能下降比质量更严重。与男性相比,年龄在27-28个月之间的女性显示出较少的肌少症,但可能的病例更多。随着肌少症的发展,在男性中观察到肌肉收缩性降低和IIB型纤维尺寸降低的趋势。线粒体生物发生,氧化能力,AMPK-自噬信号随着男性肌少症的发展而减少,与线粒体代谢相关的途径与肌肉质量呈正相关。在线粒体生物发生中没有观察到年龄或肌肉减少相关的变化,OXPHOS复合物,AMPK信号,线粒体自噬,或者女性的atrogenes。我们的结果突出了与年龄相关的肌肉质量和功能下降的不同轨迹,提供与肌肉减少症进展相关的性别依赖性分子变化的见解,这可能为新的治疗干预措施的未来发展提供信息。
    Our study was to characterize sarcopenia in C57BL/6J mice using a clinically relevant definition to investigate the underlying molecular mechanisms. Aged male (23-32 months old) and female (27-28 months old) C57BL/6J mice were classified as non-, probable-, or sarcopenic based on assessments of grip strength, muscle mass, and treadmill running time, using 2 SDs below the mean of their young counterparts as cutoff points. A 9%-22% prevalence of sarcopenia was identified in 23-26 month-old male mice, with more severe age-related declines in muscle function than mass. Females aged 27-28 months showed fewer sarcopenic but more probable cases compared with the males. As sarcopenia progressed, a decrease in muscle contractility and a trend toward lower type IIB fiber size were observed in males. Mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in males, with pathways linked to mitochondrial metabolism positively correlated with muscle mass. No age- or sarcopenia-related changes were observed in mitochondrial biogenesis, OXPHOS complexes, AMPK signaling, mitophagy, or atrogenes in females. Our results highlight the different trajectories of age-related declines in muscle mass and function, providing insights into sex-dependent molecular changes associated with sarcopenia progression, which may inform the future development of novel therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肺部疾病影响40%至80%的肥胖个体。呼吸肌功能障碍与这些疾病有关;然而,其病理生理学在很大程度上仍未定义。遭受饮食诱导的肥胖(DIO)的小鼠出现膈肌无力。膈内肥胖和细胞外基质(ECM)含量的增加与收缩力的降低有关。血小板反应蛋白-1(THBS1)是一种肥胖相关的基质细胞蛋白,与遗传性肌病中的肌肉损伤有关。THBS1诱导纤维-脂肪原祖细胞(FAP)-分化为脂肪细胞和成纤维细胞的间充质细胞的增殖。我们假设THBS1驱动DIO中FAP介导的膈肌重塑和收缩功能障碍。我们通过比较饮食攻击对野生型(WT)和Thbs1敲除(Thbs1-/-)小鼠的隔膜的影响来测试这一点。大量和单细胞转录组学显示了WT隔膜中DIO诱导的基质扩张。膈肌FAP显示ECM和TGFβ相关表达特征的上调以及先前与2型糖尿病相关的Thy1表达亚群的增加。尽管体重增加相似,Thbs1-/-小鼠被保护免受这些转录组变化和肥胖诱导的膈肌肥胖和ECM沉积的增加。与WT控件不同,Thbs1-/-隔膜在DIO挑战后保持正常的收缩力和运动。这些发现证实THBS1是营养过剩中膈肌基质重塑和收缩功能障碍的必要介质,也是肥胖相关呼吸功能障碍的潜在治疗靶点。
    Pulmonary disorders affect 40%-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragm muscle weakness. Increased intradiaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) - mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1-knockout (Thbs1-/-) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF-β-related expression signatures and augmentation of a Thy1-expressing subpopulation previously linked to type 2 diabetes. Despite similar weight gain, Thbs1-/- mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1-/- diaphragms maintained normal contractile force and motion after DIO challenge. THBS1 is therefore a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因组维持和复制所必需的细胞质和核铁-硫(Fe-S)酶取决于用于簇获取的细胞质Fe-S组装(CIA)机制。CIA机械的核心由CIAO1,MMS19和FAM96B的复合物组成。迄今为止,CIA途径组分功能丧失的生理后果仍未表征。我们的研究表明,在CIAO1中,双等位基因功能丧失的患者出现了近端和轴向肌无力,波动的肌酸激酶升高,和呼吸功能不全。此外,他们出现中枢神经系统症状,包括学习困难和神经行为合并症,随着铁沉积在大脑深部核中,轻度正常细胞性到大细胞性贫血,和胃肠道症状。突变分析显示与WTCIAO1相比,变体的稳定性降低。功能测定表明在患者中鉴定的变体未能招募Fe-S受体蛋白,导致DNA解旋酶的活性受损,聚合酶,并修复依赖CIA复合物获得Fe-S辅因子的酶。慢病毒介导的CIAO1表达恢复逆转了所有患者衍生的细胞异常。我们的研究将CIAO1鉴定为人类疾病基因,并提供了对细胞溶质Fe-S组装途径在人类健康和疾病中的更广泛意义的见解。
    Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized. Our study revealed that patients with biallelic loss of function in CIAO1 developed proximal and axial muscle weakness, fluctuating creatine kinase elevation, and respiratory insufficiency. In addition, they presented with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, mild normocytic to macrocytic anemia, and gastrointestinal symptoms. Mutational analysis revealed reduced stability of the variants compared with WT CIAO1. Functional assays demonstrated failure of the variants identified in patients to recruit Fe-S recipient proteins, resulting in compromised activities of DNA helicases, polymerases, and repair enzymes that rely on the CIA complex to acquire their Fe-S cofactors. Lentivirus-mediated restoration of CIAO1 expression reversed all patient-derived cellular abnormalities. Our study identifies CIAO1 as a human disease gene and provides insights into the broader implications of the cytosolic Fe-S assembly pathway in human health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨骼肌的复杂组成和功能特性使该器官成为生物医学研究人员和临床医生研究的重要课题。将性别视为生物学变量,增加了额外的复杂性。最近的研究进展揭示了发育生物学中的性二态,肌肉稳态,适应性反应,与骨骼肌有关的疾病。许多观察到的性别差异都有荷尔蒙和分子机制的基础,而其他的还有待阐明。需要进一步的研究来研究决定骨骼肌各个方面基于性别的差异的机制。因此,骨骼肌生物学家有必要确保女性和男性受试者在生物医学和临床研究中都有代表,以促进所有患者的成功测试和治疗开发。
    The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    卫星细胞,骨骼肌组织的干细胞,在再生医学中具有显着的再生能力和治疗潜力。然而,来自自体或供体来源的肌肉的低卫星细胞产量阻碍了卫星细胞移植用于治疗肌肉疾病的采用,包括杜氏肌营养不良症(DMD)。为了解决这个限制,在这里,我们研究了卫星细胞是否可以来自同种异体或异种动物宿主。首先,将CRISPR/Cas9校正的小鼠DMD诱导的多能干细胞(iPSC)注射到携带宿主卫星细胞消融系统的小鼠囊胚中,从而产生了专门携带iPSC衍生卫星细胞的种内嵌合体。此外,将基因校正的DMD-iPSC注射到大鼠胚泡中导致形成带有小鼠卫星细胞的种间大鼠-小鼠嵌合体。值得注意的是,种内或种间嵌合体产生的iPSC衍生的卫星细胞或衍生成肌细胞在肌内移植后恢复DMD小鼠的肌营养不良蛋白表达,并为卫星细胞池做出了贡献。总的来说,这项研究证明了在不同动物物种中产生治疗能力干细胞的可行性,提高了在大型动物中产生人类肌肉干细胞用于再生医学目的的可能性。
    Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected Dmdmdx mouse induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Notably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌肉减少症通过肌肉能量和质量的损失给老年人带来负担,然而,在功能上挽救这两个参数的治疗方法都缺失。糖皮质激素泼尼松根据摄入频率重塑肌肉代谢,但其在少肌症中的作用机制尚不清楚。我们发现,每周一次的间歇性泼尼松可以将24个月大的老年小鼠的肌肉质量恢复到与4个月大的年轻小鼠相当的水平。我们在包含PGC1α及其辅因子Lipin1的肌肉中发现了一种与年龄和性别无关的糖皮质激素受体反式激活程序。治疗通过肌细胞特异性PGC1α的同工型1和通过同工型4协调改善线粒体丰度,这是处理驱动的从葡萄糖到氨基酸生物合成的碳穿梭增加所必需的。我们还探讨了肌细胞特异性Lipin1作为非冗余因子诱使PGC1α上调以刺激氧化和合成代谢作用。我们的研究揭示了一种在肌细胞中抗衰老的药物程序,以协调地挽救肌肉减少症的能量和质量。
    Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    β-肌球蛋白基因(MYH7)的卷曲螺旋棒区域内的脯氨酸取代是导致Laing远端肌病(MPD1)的主要突变,以远端/近端肌肉进行性无力为特征的常染色体显性疾病。我们报道MDP1突变R1500P,在我们认为是第一个这种疾病的小鼠模型中进行了研究,尽管在指导粗丝组装的结构杆域中,但对肌球蛋白运动活动产生不利影响。在孤立的突变肌肉上进行的收缩性实验,肌原纤维,和肌纤维确定肌肉疲劳和无力表型,肌动蛋白-肌球蛋白脱离率增加,以及肌球蛋白头部向更具反应性的无序松弛(DRX)状态的构象偏移,导致过度收缩和更大的ATP消耗。同样,MPD1患者肌肉活检的分子分析显示肌节DRX含量显着增加,如在引起肥厚型心肌病的肌球蛋白运动结构域突变子集中观察到的。最后,口服MYK-581,一种小分子,可减少DRX构型中的头部数量,显着改善了R1500P转基因小鼠的有限运行能力,并纠正了患者肌原纤维的DRX状态增加。这些研究为脯氨酸杆突变的分子发病机理提供了证据,并为肌球蛋白调节剂的治疗进展奠定了基础。
    Proline substitutions within the coiled-coil rod region of the β-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    慢性肾脏疾病(CKD)导致尿毒症代谢产物的积累,对骨骼肌功能产生负面影响。色氨酸衍生的尿毒症代谢物是芳基烃受体(AHR)的激动剂,已显示其在CKD患者的血液中被激活。这项研究调查了AHR在CKD骨骼肌病理中的作用。与肾功能正常的对照组相比,CKD患者骨骼肌中AHR依赖性基因(CYP1A1和CYP1B1)表达明显上调(P=0.032),AHR激活的程度与线粒体呼吸呈负相关(P<0.001)。在患有CKD的小鼠中,肌肉线粒体氧化磷酸化(OXPHOS)显著受损,并与血清色氨酸衍生的尿毒症代谢物水平和AHR激活密切相关.AHR的肌肉特异性缺失显着改善了具有最大尿毒症毒性(CKD丙磺舒)的雄性小鼠的线粒体OXPHOS,并消除了尿毒症代谢物与OXPHOS之间的关系。使用具有高亲和力AHR等位基因的C57BL6J中的肌肉特异性AHR敲除进一步证实了骨骼肌中的尿毒症代谢物-AHR-线粒体轴,以及肾功能正常的小鼠中组成型活性突变体AHR的异位病毒表达。值得注意的是,AHRmKO小鼠的OXPHOS变化仅在线粒体由碳水化合物驱动时才存在。进一步分析显示,小鼠AHR激活导致Pdk4表达(P<0.05)和丙酮酸脱氢酶磷酸化(P<0.05)显著增加。这些发现在骨骼肌中建立了尿毒症代谢物-AHR-Pdk4轴,该轴控制CKD期间碳水化合物氧化中的线粒体缺陷。
    Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨骼肌萎缩是由影响肌肉骨骼和神经系统的许多病理状况引起的。这些病理的一个统一特征是E3泛素连接酶家族成员的上调,导致靶蛋白的蛋白水解降解增加。尽管E3泛素连接酶在调节肌肉质量中的关键作用,它们针对降解的特定蛋白质以及它们调节骨骼肌稳态的机制仍然不明确。这里,使用斑马鱼功能丧失模型结合体内细胞生物学和蛋白质组学方法,我们揭示了atrogin-1在调节内质网伴侣BiP水平中的作用。atrogin-1的丢失导致BiP的积累,导致线粒体动力学受损,随后肌纤维完整性丧失。我们进一步暗示了在Duchenne肌营养不良的发病机理中,atrogin-1介导的BiP调节的破坏。我们发现BiP不仅在Duchenne肌营养不良中上调,但是使用药理学策略抑制它,或通过上调atrogin-1,显着改善杜氏肌营养不良斑马鱼模型的病理学。总的来说,我们的数据暗示atrogin-1和BiP在Duchenne型肌营养不良的发病机制中,并强调了atrogin-1在维持肌肉稳态方面的重要作用。
    Skeletal muscle wasting results from numerous pathological conditions affecting both the musculoskeletal and nervous systems. A unifying feature of these pathologies is the upregulation of members of the E3 ubiquitin ligase family, resulting in increased proteolytic degradation of target proteins. Despite the critical role of E3 ubiquitin ligases in regulating muscle mass, the specific proteins they target for degradation and the mechanisms by which they regulate skeletal muscle homeostasis remain ill-defined. Here, using zebrafish loss-of-function models combined with in vivo cell biology and proteomic approaches, we reveal a role of atrogin-1 in regulating the levels of the endoplasmic reticulum chaperone BiP. Loss of atrogin-1 resulted in an accumulation of BiP, leading to impaired mitochondrial dynamics and a subsequent loss in muscle fiber integrity. We further implicated a disruption in atrogin-1-mediated BiP regulation in the pathogenesis of Duchenne muscular dystrophy. We revealed that BiP was not only upregulated in Duchenne muscular dystrophy, but its inhibition using pharmacological strategies, or by upregulating atrogin-1, significantly ameliorated pathology in a zebrafish model of Duchenne muscular dystrophy. Collectively, our data implicate atrogin-1 and BiP in the pathogenesis of Duchenne muscular dystrophy and highlight atrogin-1\'s essential role in maintaining muscle homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肾小管聚集肌病(TAM)和Stormorken综合征(STRMK)是临床上重叠的疾病,其特征是儿童期起病的肌无力和多系统体征的可变发生。包括身材矮小,血小板减少症,和脾功能减退.TAM/STRMK是由Ca2传感器STIM1或Ca2通道ORAI1中的功能获得突变引起的,两者都通过普遍存在的存储操作的Ca2进入(SOCE)机制来调节Ca2稳态。细胞中的功能实验表明,TAM/STRMK突变诱导SOCE过度激活,导致细胞外Ca2+过度流入。目前没有TAM/STRMK的治疗方法,但是SOCE适合操纵。这里,我们将携带最常见TAM/STRMK突变的Stim1R304W/+小鼠与携带ORAI1突变的Orai1R93W/+小鼠交叉,部分阻碍Ca2+流入.与Stim1R304W/+同窝相比,Stim1R304W/+Orai1R93W/+后代显示骨骼结构正常化,脾脏组织学,和肌肉形态;血小板增加;并改善肌肉收缩和松弛动力学。因此,比较RNA-Seq在Stim1R304W/肌肉中检测到超过1,200个失调基因,并揭示了Stim1R304W/Orai1R93W/小鼠中基因表达的主要恢复。总之,我们提供生理,形态学,功能,和分子数据突出ORAI1抑制挽救多系统TAM/STRMK体征的治疗潜力,我们确定肌肉生长抑制素是人类和小鼠TAM/STRMK的有希望的生物标志物。
    Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号