%0 Journal Article %T Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. %A Buras ED %A Woo MS %A Kaul Verma R %A Kondisetti SH %A Davis CS %A Claflin DR %A Converso-Baran K %A Michele DE %A Brooks SV %A Chun TH %J JCI Insight %V 0 %N 0 %D 2024 Jul 2 %M 38954467 %F 9.484 %R 10.1172/jci.insight.175047 %X Pulmonary disorders impact 40% to 80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) - mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout (Thbs1-/-) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF β-related expression signatures and augmentation of a Thy1-expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1-/- mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1-/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.