%0 Journal Article %T ORAI1 inhibition as an efficient preclinical therapy for tubular aggregate myopathy and Stormorken syndrome. %A Silva-Rojas R %A Pérez-Guàrdia L %A Simon A %A Djeddi S %A Treves S %A Ribes A %A Silva-Hernández L %A Tard C %A Laporte J %A Böhm J %J JCI Insight %V 9 %N 6 %D 2024 Mar 5 %M 38516893 %F 9.484 %R 10.1172/jci.insight.174866 %X Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.