Models, Neurological

模型,Neurological
  • 文章类型: Journal Article
    由于EEG/MEG对浅表区域和皮质下结构的空间配置的更高灵敏度,来自深层发生器的癫痫活动的电/磁脑图(EEG/MEG)源成像(EMSI)通常具有挑战性。我们先前证明了均值上的相干最大熵(cMEM)方法精确定位浅层皮层发生器及其空间范围的能力。这里,我们提出了一种深度加权自适应的cMEM,以更准确地定位深度生成器。使用癫痫活动的真实MEG/高密度EEG(HD-EEG)模拟和局灶性癫痫患者的实际MEG/HD-EEG记录来评估这些方法。我们在MEM框架中加入了深度加权,以补偿其对表面生成器的偏好。我们还包括了两个海马的网格,作为源模型中的附加深层结构。我们为MEG和HD-EEG生成了5400次发作间癫痫放电的真实模拟,涉及广泛的空间范围和信噪比(SNR)水平,在研究EMSI对16例患者的临床HD-EEG和14例患者的MEG之前。通过目视检查标记临床发作间癫痫放电。我们应用了三种EMSI方法:cMEM,深度加权cMEM和深度加权最小范数估计(MNE)。地面实况被定义为真实的模拟发生器或基于患者可用的临床信息的绘制区域。对于深层来源,与cMEM和深度加权MNE相比,深度加权cMEM改进了定位,而深度加权cMEM不会降低浅表区域的定位精度。对于患者数据,我们观察到深度源的本地化有所改善,尤其是内侧颞叶癫痫患者,cMEM未能重建海马中的初始发生器。深度加权对于MEG(梯度计)比HD-EEG更为重要。当考虑MEM的小波扩展的深度加权时,发现了类似的发现。总之,深度加权cMEM改善了深层源的定位,而不会或最小程度地降低了浅层源的定位。对于癫痫患者,使用MEG和HD-EEG以及临床MEG和HD-EEG进行的广泛模拟证明了这一点。
    Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients\' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究评估了在基于电导的规范微电路模型下,脑磁图(MEG)的静息状态动态因果模型(DCM)的可靠性,在后验参数估计和模型证据方面。我们使用来自两个会话的静息状态MEG数据,相隔两周,来自一个由阿尔茨海默病引起的受试者间高差异的队列。我们的重点不是疾病的影响,但在方法的可靠性(如主体内会话协议)上,这对未来的疾病进展和药物干预研究至关重要。为了评估一级DCM的可靠性,我们比较与受试者特定自由能之间的协方差相关的模型证据(即,模型的“质量”)与没有类间相关性的对比。然后,我们使用参数经验贝叶斯(PEB)来研究受试者之间推断的DCM参数概率分布之间的差异。具体来说,我们检查了支持或反对参数差异的证据(I)受试者内部,会内,和纪元之间;(Ii)受试者内部会话之间;和(Iii)受试者之间的现场内,适应参数估计之间的条件依赖性。我们表明,对于时间接近的数据,在类似的情况下,超过95%的推断DCM参数不太可能不同,在会话中谈到相互的可预测性。使用PEB,我们显示了“可靠性”的常规定义与推断模型参数之间的条件依赖性之间的相互关系。我们的分析证实了基于电导的DCM对静息状态神经生理数据的可靠性和可重复性。在这方面,内隐生成模型适用于神经和精神疾病的介入和纵向研究。
    This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer\'s disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the \'quality\' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of \'reliability\' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丘脑底核中的神经元亚群具有不同的活动模式,与漂移扩散模型的三个假设有关。
    Subpopulations of neurons in the subthalamic nucleus have distinct activity patterns that relate to the three hypotheses of the Drift Diffusion Model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    灵活的计算是智能行为的标志。然而,人们对神经网络如何在上下文中重新配置以进行不同的计算知之甚少。在目前的工作中,通过研究多任务人工递归神经网络,我们确定了模块化计算的算法神经基础。动态系统分析揭示了学习的计算策略,反映了训练任务集的模块化子任务结构。动态图案,它们是通过动力学实现特定计算的神经活动的重复模式,比如吸引子,决策边界和旋转,跨任务重用。例如,需要记忆连续循环变量的任务重新利用了相同的环吸引子。我们表明,当单元激活函数被限制为正数时,动态基序是由单元簇实现的。聚集性病变导致模块化性能缺陷。在学习的初始阶段之后,重新配置了基序以进行快速迁移学习。这项工作建立了动态基序作为组成计算的基本单位,介于神经元和网络之间。因为全脑研究同时记录来自多个专门系统的活动,动态主题框架将指导有关专业化和泛化的问题。
    Flexible computation is a hallmark of intelligent behavior. However, little is known about how neural networks contextually reconfigure for different computations. In the present work, we identified an algorithmic neural substrate for modular computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses revealed learned computational strategies mirroring the modular subtask structure of the training task set. Dynamical motifs, which are recurring patterns of neural activity that implement specific computations through dynamics, such as attractors, decision boundaries and rotations, were reused across tasks. For example, tasks requiring memory of a continuous circular variable repurposed the same ring attractor. We showed that dynamical motifs were implemented by clusters of units when the unit activation function was restricted to be positive. Cluster lesions caused modular performance deficits. Motifs were reconfigured for fast transfer learning after an initial phase of learning. This work establishes dynamical motifs as a fundamental unit of compositional computation, intermediate between neuron and network. As whole-brain studies simultaneously record activity from multiple specialized systems, the dynamical motif framework will guide questions about specialization and generalization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对象分类已被提出作为灵长类腹侧视觉流的主要目标,并已被用作视觉系统的深度神经网络模型(DNN)的优化目标。然而,视觉大脑区域代表许多不同类型的信息,并且仅对对象身份的分类进行优化不会限制其他信息如何在视觉表示中编码。关于不同场景参数的信息可以完全丢弃(\'不变性\'),在种群活动的非干扰子空间中表示(“因式分解”)或以纠缠方式编码。在这项工作中,我们提供的证据表明,因式分解是生物视觉表征的规范原则。在猴子腹侧视觉层次中,我们发现,在更高级别的区域中,对象身份的对象姿态和背景信息的因式分解增加,并且极大地有助于提高对象身份解码性能。然后,我们对单个场景参数的分解进行了大规模分析-照明,背景,摄像机视点,和对象姿态-在视觉系统的不同DNN模型库中。最匹配神经的模型,功能磁共振成像,来自12个数据集的猴子和人类的行为数据往往是最强烈地分解场景参数的数据。值得注意的是,这些参数的不变性与神经和行为数据的匹配并不一致,这表明,在因式分解的活动子空间中维护非类信息通常比完全丢弃它更可取。因此,我们认为视觉场景信息的分解是大脑及其DNN模型中广泛使用的策略。
    看图片时,我们可以快速识别一个可识别的物体,比如苹果,对它应用一个单词标签。尽管广泛的神经科学研究集中在人类和猴子的大脑如何实现这种识别,我们对大脑和类似大脑的计算机模型如何解释视觉场景的其他复杂方面的理解-例如对象位置和环境上下文-仍然不完整。特别是,目前尚不清楚物体识别在多大程度上以牺牲其他重要场景细节为代价。例如,可以同时处理场景的各个方面。另一方面,一般物体识别可能会干扰这些细节的处理。为了调查这一点,Lindsey和Issa分析了12个猴子和人脑数据集,以及许多计算机模型,探索场景的不同方面如何在神经元中编码,以及这些方面如何由计算模型表示。分析表明,阻止有效分离和保留有关对象姿势和环境上下文的信息会恶化猴子皮层神经元中的对象识别。此外,最类似大脑的计算机模型可以独立保存其他场景细节,而不会干扰物体识别。研究结果表明,人类和猴子的高级腹侧视觉处理系统能够以比以前所理解的更复杂的方式来表示环境。在未来,研究更多的大脑活动数据可以帮助识别编码信息的丰富程度,以及它如何支持空间导航等其他功能。这些知识可以帮助建立以相同方式处理信息的计算模型,有可能提高他们对现实世界场景的理解。
    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (\'invariance\'), represented in non-interfering subspaces of population activity (\'factorization\') or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters - lighting, background, camera viewpoint, and object pose - in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.
    When looking at a picture, we can quickly identify a recognizable object, such as an apple, applying a single word label to it. Although extensive neuroscience research has focused on how human and monkey brains achieve this recognition, our understanding of how the brain and brain-like computer models interpret other complex aspects of a visual scene – such as object position and environmental context – remains incomplete. In particular, it was not clear to what extent object recognition comes at the expense of other important scene details. For example, various aspects of the scene might be processed simultaneously. On the other hand, general object recognition may interfere with processing of such details. To investigate this, Lindsey and Issa analyzed 12 monkey and human brain datasets, as well as numerous computer models, to explore how different aspects of a scene are encoded in neurons and how these aspects are represented by computational models. The analysis revealed that preventing effective separation and retention of information about object pose and environmental context worsened object identification in monkey cortex neurons. In addition, the computer models that were the most brain-like could independently preserve the other scene details without interfering with object identification. The findings suggest that human and monkey high level ventral visual processing systems are capable of representing the environment in a more complex way than previously appreciated. In the future, studying more brain activity data could help to identify how rich the encoded information is and how it might support other functions like spatial navigation. This knowledge could help to build computational models that process the information in the same way, potentially improving their understanding of real-world scenes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经传递的延迟是神经科学领域的重要课题。神经元树突发射或接收的尖峰信号从轴突传播到突触前细胞。尖峰信号然后触发突触处的化学反应,其中突触前细胞将神经递质转移到突触后细胞,通过离子通道的化学反应再生电信号,并将它们传递给邻近的神经元。在将复杂的生理反应过程描述为随机过程的背景下,这项研究旨在表明尖峰信号的最大时间间隔的分布遵循极端顺序统计。通过考虑泄漏积分和火焰模型时间常数的统计方差,尖峰信号的确定性时间演化模型,我们在尖峰信号的时间间隔中启用了随机性。当时间常数服从指数分布函数时,尖峰信号的时间间隔也遵循指数分布。在这种情况下,我们的理论和模拟证实,最大时间间隔的直方图遵循Gumbel分布,极值统计的三种形式之一。我们进一步证实,当尖峰信号的时间间隔遵循Pareto分布时,最大时间间隔的直方图遵循Fréchet分布。这些发现证实了神经传输延迟可以使用极值统计来描述,因此可以用作传输延迟的新指标。
    Delays in nerve transmission are an important topic in the field of neuroscience. Spike signals fired or received by the dendrites of a neuron travel from the axon to a presynaptic cell. The spike signal then triggers a chemical reaction at the synapse, wherein a presynaptic cell transfers neurotransmitters to the postsynaptic cell, regenerates electrical signals via a chemical reaction through ion channels, and transmits them to neighboring neurons. In the context of describing the complex physiological reaction process as a stochastic process, this study aimed to show that the distribution of the maximum time interval of spike signals follows extreme-order statistics. By considering the statistical variance in the time constant of the leaky Integrate-and-Fire model, a deterministic time evolution model for spike signals, we enabled randomness in the time interval of the spike signals. When the time constant follows an exponential distribution function, the time interval of the spike signal also follows an exponential distribution. In this case, our theory and simulations confirmed that the histogram of the maximum time interval follows the Gumbel distribution, one of the three forms of extreme-value statistics. We further confirmed that the histogram of the maximum time interval followed a Fréchet distribution when the time interval of the spike signal followed a Pareto distribution. These findings confirm that nerve transmission delay can be described using extreme value statistics and can therefore be used as a new indicator of transmission delay.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    以目标为导向的行为的执行需要感觉图和运动图之间的空间一致性。当前上丘感觉运动转换的模型依赖于静态空间感受野在运动终点1-6上的地形图。这里,为了通过实验评估这种标准静态对齐模型的有效性,我们解剖了上丘的视觉运动网络,并在体内进行了跨层的细胞内和细胞外记录,在约束和不约束的条件下,评估单个运动和前运动神经元的运动和视觉调谐。我们发现,丘运动单位的视觉静态空间感受野定义不清,而是对动力学视觉特征的响应。揭示了感觉矢量和运动矢量之间矢量空间中直接对齐的存在,而不是像经典假设的那样在空间感受野和运动端点之间。我们表明,根据这些动力学对准原理构建的神经网络非常适合维持行为学行为,例如快速拦截移动和静态目标。这些发现揭示了感觉运动对准过程的新维度。通过将对齐从静态域扩展到动力学域,这项工作提供了一个新颖的概念框架,用于理解感觉运动收敛的性质及其在指导目标导向行为中的相关性。
    The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints1-6. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons. We found that collicular motor units have poorly defined visual static spatial receptive fields and respond instead to kinetic visual features, revealing the existence of a direct alignment in vectorial space between sensory and movement vectors, rather than between spatial receptive fields and movement endpoints as canonically hypothesized. We show that a neural network built according to these kinetic alignment principles is ideally placed to sustain ethological behaviours such as the rapid interception of moving and static targets. These findings reveal a novel dimension of the sensorimotor alignment process. By extending the alignment from the static to the kinetic domain this work provides a novel conceptual framework for understanding the nature of sensorimotor convergence and its relevance in guiding goal-directed behaviours.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    同步是在涉及多种大脑活动的神经元网络中观察到的现象。诸如Wilson-Cowan(WC)和Jansen-Rit(JR)的神经质量模型显示同步状态。尽管在过去的几十年中对这些模型进行了广泛的研究,它们表现出二阶相变(SOPT)和临界性的潜力尚未得到充分承认。在这项研究中,构建了两个具有小世界拓扑的耦合WC和JR节点网络,并使用Kuramoto阶数参数(KOP)来量化同步量。此外,我们使用同步变异系数研究了SOPT的存在。两个网络都通过改变其节点之间的耦合权重来达到高同步。此外,它们在控制参数的某些值处表现出同步的突然变化,而不一定与相变有关。虽然SOPT仅在JR模型中观察到,WC和JR模型均未显示幂律行为。我们的研究进一步调查了已知存在于病理性大脑状态中的全球同步现象,比如癫痫发作。JR模型显示了全局同步,而WC模型似乎更适合产生部分同步模式。
    Synchronization is a phenomenon observed in neuronal networks involved in diverse brain activities. Neural mass models such as Wilson-Cowan (WC) and Jansen-Rit (JR) manifest synchronized states. Despite extensive research on these models over the past several decades, their potential of manifesting second-order phase transitions (SOPT) and criticality has not been sufficiently acknowledged. In this study, two networks of coupled WC and JR nodes with small-world topologies were constructed and Kuramoto order parameter (KOP) was used to quantify the amount of synchronization. In addition, we investigated the presence of SOPT using the synchronization coefficient of variation. Both networks reached high synchrony by changing the coupling weight between their nodes. Moreover, they exhibited abrupt changes in the synchronization at certain values of the control parameter not necessarily related to a phase transition. While SOPT was observed only in JR model, neither WC nor JR model showed power-law behavior. Our study further investigated the global synchronization phenomenon that is known to exist in pathological brain states, such as seizure. JR model showed global synchronization, while WC model seemed to be more suitable in producing partially synchronized patterns.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    注意通过选择与决策相关的特征来支持决策。已提出选择性增强相关特征和抑制干扰物作为驱动此选择过程的潜在神经机制。然而,当相关性无法直接确定时,注意力是如何运作的,需要在内部构建的注意力信号很少被理解。在这里,我们记录了注意力转移任务中小鼠前扣带皮质(ACC)中的神经元群体,其中刺激方式的相关性在试验块之间发生了变化。与V1录音相比,在初始瞬态后,ACC中无关模态的解码逐渐下降。我们的分析证明和任务的递归神经网络模型揭示了相互抑制的连接,这些连接产生了在小鼠中观察到的上下文门控抑制。使用此RNN模型,我们预测了单个神经元的上下文调制与其刺激驱动之间的相关性,我们在ACC中证实了这一点,但在V1中没有证实。
    Attention supports decision making by selecting the features that are relevant for decisions. Selective enhancement of the relevant features and inhibition of distractors has been proposed as potential neural mechanisms driving this selection process. Yet, how attention operates when relevance cannot be directly determined, and the attention signal needs to be internally constructed is less understood. Here we recorded from populations of neurons in the anterior cingulate cortex (ACC) of mice in an attention-shifting task where relevance of stimulus modalities changed across blocks of trials. In contrast with V1 recordings, decoding of the irrelevant modality gradually declined in ACC after an initial transient. Our analytical proof and a recurrent neural network model of the task revealed mutually inhibiting connections that produced context-gated suppression as observed in mice. Using this RNN model we predicted a correlation between contextual modulation of individual neurons and their stimulus drive, which we confirmed in ACC but not in V1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    处理语言时,大脑被认为部署专门的计算来从复杂的语言结构中构建意义。最近,基于Transformer架构的人工神经网络彻底改变了自然语言处理领域。变形金刚通过结构化电路计算跨单词集成上下文信息。先前的工作集中在这些电路生成的内部表示(“嵌入”)上。在本文中,相反,我们直接分析电路计算:我们将这些计算解构为功能专用的“转换”,将上下文信息集成到单词中。使用参与者听自然主义故事时获得的功能MRI数据,我们首先验证了在整个皮层语言网络中大脑活动的变化。然后,我们证明了由个人执行的紧急计算,功能专门的“注意头”差异预测特定皮质区域的大脑活动。这些头部沿着对应于低维皮层空间中的不同层和上下文长度的梯度下降。
    When processing language, the brain is thought to deploy specialized computations to construct meaning from complex linguistic structures. Recently, artificial neural networks based on the Transformer architecture have revolutionized the field of natural language processing. Transformers integrate contextual information across words via structured circuit computations. Prior work has focused on the internal representations (\"embeddings\") generated by these circuits. In this paper, we instead analyze the circuit computations directly: we deconstruct these computations into the functionally-specialized \"transformations\" that integrate contextual information across words. Using functional MRI data acquired while participants listened to naturalistic stories, we first verify that the transformations account for considerable variance in brain activity across the cortical language network. We then demonstrate that the emergent computations performed by individual, functionally-specialized \"attention heads\" differentially predict brain activity in specific cortical regions. These heads fall along gradients corresponding to different layers and context lengths in a low-dimensional cortical space.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号