Chromatin organization

染色质组织
  • 文章类型: Journal Article
    着丝粒是专门研究姐妹染色单体内聚的染色质结构,动球组装,染色体分离过程中的微管附着。脊椎动物的区域着丝粒由组蛋白H3变体CENP-A占据的高度重复序列的长区域组成,两侧是周壁。着丝粒染色质的三维组织对于其功能和承受主轴力的能力至关重要。在CENP-A旁边,这种结构折叠的主要贡献者包括本构中心粒相关网络(CCAN)的组成部分,蛋白质CENP-B,凝聚素和粘附素复合物。尽管它很重要,脊椎动物区域着丝粒的复杂结构在很大程度上仍然未知。长读测序的最新进展,超分辨率和低温电子显微镜,和染色体构象捕获技术大大改善了我们在各个层面对这种结构的理解,从着丝粒序列的线性排列及其表观遗传景观到其高阶压实。在这次审查中,我们讨论了关于着丝粒组织的最新见解,并将它们放在最近的发现中,这些发现描述了着丝粒的双向高阶组织。
    Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在哺乳动物细胞中,粘附蛋白复合物被认为在间期沿染色质易位,通过称为活性环挤出的过程形成动态环。染色体构象捕获和成像实验表明,染色质采用紧密结构,染色体之间和染色体切片之间的相互渗透有限。我们开发了一种理论,证明主动环挤出会导致染色质的表观分形维数在30千碱基对的轮廓长度上在2到4之间交叉。异常高的分形维数[公式:见正文]是由于挤出环在主动挤出过程中无法完全松弛。较长等高线长度尺度上的压实在拓扑关联域(TAD)内延伸,促进远端元件的基因调控。挤出诱导的压实会隔离TAD,使TAD之间的重叠减少到35%以下,并使染色质的缠结链增加多达50倍至几个兆碱基对。此外,主动环挤压将粘附素运动与先前挤压粘附素形成的染色质构象相耦合,并导致染色质基因座在滞后时间([公式:见正文])超过数十分钟的均方位移与[公式:见正文]成正比。我们通过混合分子动力学-蒙特卡罗模拟验证了我们的结果,并表明我们的理论与实验数据一致。这项工作为相间染色质的紧密组织提供了理论依据,解释TAD分离和染色质缠结抑制的物理原因,这有助于有效的基因调控。
    In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross-over between two and four at contour lengths on the order of 30 kilo-base pairs. The anomalously high fractal dimension [Formula: see text] is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times ([Formula: see text]) longer than tens of minutes to be proportional to [Formula: see text]. We validate our results with hybrid molecular dynamics-Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    着丝粒是用于组装动子的支架,可确保细胞分裂过程中的染色体分离。脊椎动物着丝粒如何获得三维结构以实现其主要功能尚不清楚。使用超分辨率成像,capture-C,和聚合物建模,我们显示脊椎动物着丝粒在有丝分裂过程中被凝集素划分为两个亚结构域。二分结构在人类中发现,鼠标,和鸡细胞,因此是脊椎动物着丝粒的基本特征。超分辨率成像和电子层析成像显示,二分着丝粒组装二分动体,每个子域结合一个不同的微管束。Cohesin连接着丝粒子域,限制它们的分离,以响应主轴力,并避免使用merotelic动子-主轴附件。癌细胞分裂过程中的滞后染色体通常具有微晶体附着,其中着丝粒亚结构域被分离并双向定位。我们的工作揭示了脊椎动物着丝粒生物学的一个基本方面,对理解保证忠实染色体分离的机制具有重要意义。
    Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核仁是哺乳动物细胞中最突出的液滴状无膜细胞器。与终末分化体细胞的核仁不同,全能细胞中的那些,如鼠受精卵或双细胞胚胎,具有独特的核仁结构,称为核仁前体体(NPBs)。以前,人们普遍认为,受精卵中的NPBs只是材料的被动存储库,这些材料将在合子基因组激活(ZGA)后逐渐用于构建功能齐全的核仁。然而,最近的研究对这种简单的观点提出了挑战,并证明NPBs的功能超出了核糖体生物发生的范围。在这次审查中,我们提供了受精卵和小鼠早期双细胞胚胎中NPBs功能的快照。我们建议这些无膜细胞器充当染色质组织的调节中心。一方面,NPB为中心染色质重塑和外周染色质重塑提供了结构平台。另一方面,核仁结构的动态变化控制着先驱因子(即双同源盒(Dux))的释放。似乎在从全能性到多能性的转变过程中,全能性的下降和全功能核仁形成的开始不是独立的事件,而是相互关联的。因此,有理由假设解剖NPBs的更多未知功能可能会进一步揭示早期胚胎发育的谜团,并可能最终提供新的方法来提高重编程效率。
    The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为异质核糖核蛋白(hnRNP)家族的成员之一,支架附着因子A(SAF-A)或hnRNPU,是一种丰富的核蛋白。具有RNA和DNA结合活性,SAF-A具有多种功能。本文就SAF-A和SAF-A相关疾病的生物学结构和不同作用作一综述。发现SAF-A通过RNA和DNA维持高级染色质组织,并在起始和延伸阶段调节转录。除了调节pre-mRNA剪接,mRNA运输和稳定,SAF-A参与双链断裂和有丝分裂修复。因此,SAF-A的异常表达和突变导致肿瘤和神经发育受损。此外,SAF-A可能在抗病毒系统中发挥作用。总之,由于其基本的生物学功能,SAF-A可能是有价值的临床预测因子或治疗靶标。由于SAF-A在肿瘤和病毒感染中的作用可能存在争议,需要更多的动物实验和临床试验。
    As one member of the heterogeneous ribonucleoprotein (hnRNP) family, scaffold attachment factor A (SAF-A) or hnRNP U, is an abundant nuclear protein. With RNA and DNA binding activities, SAF-A has multiple functions. The present review focused on the biological structure and different roles of SAF-A and SAF-A-related diseases. It was found that SAF-A maintains the higher-order chromatin organization via RNA and DNA, and regulates transcription at the initiation and elongation stages. In addition to regulating pre-mRNA splicing, mRNA transportation and stabilization, SAF-A participates in double-strand breaks and mitosis repair. Therefore, the aberrant expression and mutation of SAF-A results in tumors and impaired neurodevelopment. Moreover, SAF-A may play a role in the anti-virus system. In conclusion, due to its essential biological functions, SAF-A may be a valuable clinical prediction factor or therapeutic target. Since the role of SAF-A in tumors and viral infections may be controversial, more animal experiments and clinical assays are needed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因表达的精确时空调控对于确定细胞的命运和功能至关重要。增强子是作为周期性转录推进器起作用的顺式作用DNA元件,并且它们的活性是细胞类型特异性的。增强剂的集群,叫做超级增强剂,转录激活子比增强子更密集,驱动目标基因的更强表达,在建立和维护蜂窝身份方面发挥着重要作用。在这里,我们回顾了有关超级增强子的组成和结构的最新知识,以了解它们如何有力地刺激细胞身份基因的表达。我们还回顾了它们在各种细胞类型以及非癌性和癌性疾病发展中的参与,暗示着以它们为目标来对抗各种疾病的治疗兴趣。
    Precise spatiotemporal regulations of gene expression are essential for determining cells\' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    核孔复合物(NPC)是核-细胞质运输的唯一介质。尽管在理解其保守的核心架构方面取得了巨大的进步,外围区域可以在物种内部和物种之间表现出相当大的差异。一种这样的结构是笼状核篮。尽管它在mRNA监测和染色质组织中起着至关重要的作用,对建筑的理解仍然难以捉摸。使用细胞内低温电子层析成像和层析图分析,我们探索了NPC的结构变异和跨真菌(酵母;酿酒酵母)的核篮,哺乳动物(小鼠;Musculus),和原生动物(T.gondii)。使用综合结构建模,我们计算了酵母和哺乳动物中篮的模型,该模型揭示了核环中Nups的中心如何与形成篮的Mlp/Tpr蛋白结合:Mlp/Tpr的卷曲螺旋结构域形成篮的支柱,虽然它们的非结构化末端构成了篮子的远端密度,在核质转运之前,它可能充当mRNA预处理的对接位点。
    The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC\'s structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of Nups in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    在哺乳动物细胞中,粘附蛋白复合物被认为在间期沿染色质易位,通过称为活性环挤出的过程形成动态环。染色体构象捕获和成像实验表明,染色质采用紧密结构,染色体之间和染色体切片之间的相互渗透有限。我们开发了一种理论,证明主动环挤出会导致染色质的表观分形维数在30千碱基对(kbp)的轮廓长度上在2到4之间交叉。异常高的分形维数D=4是由于挤出环在主动挤出过程中无法完全松弛。较长等高线长度尺度上的压实在拓扑关联域(TAD)内延伸,促进远端元件的基因调控。挤出诱导的压实会隔离TAD,使TAD之间的重叠减少到35%以下,并使染色质的缠结链增加多达50倍至几个兆碱基对。此外,主动环挤压将粘附素运动与先前挤压粘附素形成的染色质构象相耦合,并导致在超过数十分钟的滞后时间(Δt)内染色质基因座的均方位移与Δt1/3成正比。我们通过混合分子动力学-蒙特卡罗模拟验证了我们的结果,并表明我们的理论与实验数据一致。这项工作为相间染色质的紧密组织提供了理论依据,解释TAD分离和染色质缠结抑制的物理原因,这有助于有效的基因调控。
    结论:在间期,细胞必须压缩染色质,以使基因启动子及其调控元件经常在空间中相互接触。然而,细胞还需要将启动子与其他基因组切片中的调控元件隔离。利用高分子物理理论和计算机模拟,我们建议粘附素蛋白复合物主动将染色质挤出到拓扑相关域(TAD)中,分形维数异常高,为D≈4,同时抑制了不同TAD之间的空间重叠。我们的模型表明,与染色质环的缓慢松弛相比,主动环挤出的快速动力学保持了致密的染色质组织。这项工作提供了一个物理框架,解释了粘附素如何有助于有效的转录调控。
    In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross over between two and four at contour lengths on the order of 30 kilo-base pairs (kbp). The anomalously high fractal dimension D=4 is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times (Δt) longer than tens of minutes to be proportional to Δt1/3. We validate our results with hybrid molecular dynamics - Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    简介:在可视化复杂数据时,选择的布局方法会极大地影响识别异常值的能力,发现错误的建模假设,或者识别意想不到的模式。此外,视觉布局可以在向同行传达结果方面发挥关键作用。方法:本文,我们比较了三种视觉布局的有效性——邻接矩阵,半矩阵布局,和圆形布局-用于可视化空间连通性数据,例如,来自染色质构象捕获实验的接触。为了评估这些视觉布局,我们进行了一项由150名来自亚马逊机械土耳其人的参与者组成的研究,以及由30位生物医学研究科学家组成的第二项专家研究。结果:MechanicalTurk研究发现圆形布局最准确、最直观,而专家研究发现,圆形和半矩阵布局比矩阵布局更准确。讨论:我们得出的结论是,圆形布局可能是一个很好的默认选择,用于可视化空间接触相对较少的较小数据集,while,对于较大的数据集,半矩阵布局可能是更好的选择。我们的结果还证明了如何使用众包方法来确定哪些视觉布局最适合解决生物信息学中的特定数据挑战。
    Introduction: When visualizing complex data, the layout method chosen can greatly affect the ability to identify outliers, spot incorrect modeling assumptions, or recognize unexpected patterns. Additionally, visual layout can play a crucial role in communicating results to peers. Methods: In this paper, we compared the effectiveness of three visual layouts-the adjacency matrix, a half-matrix layout, and a circular layout-for visualizing spatial connectivity data, e.g., contacts derived from chromatin conformation capture experiments. To assess these visual layouts, we conducted a study comprising 150 participants from Amazon\'s Mechanical Turk, as well as a second expert study comprising 30 biomedical research scientists. Results: The Mechanical Turk study found that the circular layout was the most accurate and intuitive, while the expert study found that the circular and half-matrix layouts were more accurate than the matrix layout. Discussion: We concluded that the circular layout may be a good default choice for visualizing smaller datasets with relatively few spatial contacts, while, for larger datasets, the half- matrix layout may be a better choice. Our results also demonstrated how crowdsourcing methods could be used to determine which visual layouts are best for addressing specific data challenges in bioinformatics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    离子辐射诱导的DNA双链断裂可导致从突变到直接细胞死亡的严重细胞损伤。围绕损伤的染色质与负责损伤识别和修复的蛋白质之间的相互作用决定了DNA修复的效率和结果。染色质在整个中间阶段组织在三个主要功能区室中:染色质区域,染色质间室,和夹在中间的腹水。在这项研究中,我们使用染色质的超分辨率STED图像进行相关性分析;剪接因子SC35作为染色质间标记;以及碳离子照射的人HeLa细胞中的DNA修复因子53BP1,Rad51和γH2AX.染色质和染色质间仅在突出的染色质分支中重叠,染色质和53BP1之间的相关性相同。相比之下,在染色质间和53BP1之间,可以看到(270±40)nm的间隙。Rad51显示与位于凝聚异染色质边界的去凝聚的共色区域重叠,与γH2AX进一步相关。我们得出的结论是,DNA损伤在去浓缩的DNA环中被修复,位于含有异染色质的DNA密集染色质区室的外围。像γH2AX和53BP1的蛋白质作为染色质结构的支持体。
    Ion-radiation-induced DNA double-strand breaks can lead to severe cellular damage ranging from mutations up to direct cell death. The interplay between the chromatin surrounding the damage and the proteins responsible for damage recognition and repair determines the efficiency and outcome of DNA repair. The chromatin is organized in three major functional compartments throughout the interphase: the chromatin territories, the interchromatin compartment, and the perichromatin lying in between. In this study, we perform correlation analysis using super-resolution STED images of chromatin; splicing factor SC35, as an interchromatin marker; and the DNA repair factors 53BP1, Rad51, and γH2AX in carbon-ion-irradiated human HeLa cells. Chromatin and interchromatin overlap only in protruding chromatin branches, which is the same for the correlation between chromatin and 53BP1. In contrast, between interchromatin and 53BP1, a gap of (270 ± 40) nm is visible. Rad51 shows overlap with decondensed euchromatic regions located at the borders of condensed heterochromatin with further correlation with γH2AX. We conclude that the DNA damage is repaired in decondensed DNA loops in the perichromatin, located in the periphery of the DNA-dense chromatin compartments containing the heterochromatin. Proteins like γH2AX and 53BP1 serve as supporters of the chromatin structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号