CP: Metabolism

CP: 代谢
  • 文章类型: Journal Article
    长期以来,葡萄糖一直被认为是突触功能的主要能量来源。然而,目前尚不清楚替代燃料的程度,如乳酸/丙酮酸盐,有助于突触传递。通过检测海马突触中的个体释放事件,我们发现线粒体ATP的产生调节基底囊泡的释放概率和活性区(AZ)内的释放位置,由单一动作电位诱发。线粒体抑制使囊泡释放更靠近AZ中心,并通过增加超快内吞作用的发生来改变囊泡回收的效率。此外,我们发现终端可以使用氧化燃料来维持活动列车期间的囊泡循环。线粒体沿海马轴突稀疏分布,我们发现含有线粒体的末端在高频训练中显示出增强的囊泡释放和再摄取。我们的发现表明,线粒体不仅调节突触传递的几个基本特征,而且还可能有助于调节短期突触可塑性。
    Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌肉质量损失是慢性疾病和衰老的特征。这里,我们报道,骨骼肌特异性血小板反应蛋白-1转基因小鼠(Thbs1Tg)有严重的肌肉萎缩,运动能力和过早死亡的年龄依赖性下降.机械上,Thbs1激活转化生长因子β(TGFβ)-Smad2/3信号,它还诱导激活转录因子4(ATF4)的表达,这些表达共同调节自噬-溶酶体途径(ALP)和泛素-蛋白酶体系统(UPS)以促进肌肉萎缩。的确,肌纤维特异性抑制TGFβ受体信号抑制ATF4的诱导,使ALP和UPS正常化,并部分恢复Thbs1Tg小鼠的肌肉质量。同样,Smad2和Smad3或Atf4基因的肌纤维特异性缺失拮抗Thbs1诱导的肌肉萎缩。更重要的是,Thbs1-/-小鼠表现出显著降低的去神经和热量限制介导的肌肉萎缩水平,以及钝化的TGFβ-Smad3-ATF4信号。因此,Thbs1介导的TGFβ-Smad3-ATF4信号在骨骼肌中调节组织稀疏,提示基于萎缩的肌肉疾病和肌肉减少症随着衰老的目标。
    Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor β (TGFβ)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy. Indeed, myofiber-specific inhibition of TGFβ-receptor signaling represses the induction of ATF4, normalizes ALP and UPS, and partially restores muscle mass in Thbs1 Tg mice. Similarly, myofiber-specific deletion of Smad2 and Smad3 or the Atf4 gene antagonizes Thbs1-induced muscle atrophy. More importantly, Thbs1-/- mice show significantly reduced levels of denervation- and caloric restriction-mediated muscle atrophy, along with blunted TGFβ-Smad3-ATF4 signaling. Thus, Thbs1-mediated TGFβ-Smad3-ATF4 signaling in skeletal muscle regulates tissue rarefaction, suggesting a target for atrophy-based muscle diseases and sarcopenia with aging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管胆固醇代谢失调会使衰老组织容易受到炎症和过多疾病的影响,潜在的分子机制仍然不明确。这里,我们证明了代谢和遗传毒性应激,通过肝脏X核受体发挥会聚作用,上调CD38以促进溶酶体胆固醇流出,导致巨噬细胞中烟酰胺腺嘌呤二核苷酸(NAD+)消耗。胆固醇介导的NAD+耗竭诱导巨噬细胞衰老,促进年龄相关性黄斑变性(AMD)的关键特征,包括视网膜下脂质沉积和神经变性。NAD+增强逆转细胞衰老和巨噬细胞功能障碍,防止AMD表型的发展。遗传和药理学衰老可防止AMD和神经变性的发展。视网膜下给予健康巨噬细胞促进衰老巨噬细胞的清除,逆转AMD疾病负担。因此,由过量的细胞内胆固醇诱导的NAD缺陷是巨噬细胞衰老的会聚机制和与年龄相关的神经变性的因果过程。
    Although dysregulated cholesterol metabolism predisposes aging tissues to inflammation and a plethora of diseases, the underlying molecular mechanism remains poorly defined. Here, we show that metabolic and genotoxic stresses, convergently acting through liver X nuclear receptor, upregulate CD38 to promote lysosomal cholesterol efflux, leading to nicotinamide adenine dinucleotide (NAD+) depletion in macrophages. Cholesterol-mediated NAD+ depletion induces macrophage senescence, promoting key features of age-related macular degeneration (AMD), including subretinal lipid deposition and neurodegeneration. NAD+ augmentation reverses cellular senescence and macrophage dysfunction, preventing the development of AMD phenotype. Genetic and pharmacological senolysis protect against the development of AMD and neurodegeneration. Subretinal administration of healthy macrophages promotes the clearance of senescent macrophages, reversing the AMD disease burden. Thus, NAD+ deficit induced by excess intracellular cholesterol is the converging mechanism of macrophage senescence and a causal process underlying age-related neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    代谢重编程是癌症的标志,使癌细胞迅速增殖,入侵,和转移。我们表明,转移性乳腺癌细胞系和继发性转移性肿瘤中的肌酸水平是由普遍存在的线粒体肌酸激酶(CKMT1)驱动的。我们发现,虽然CKMT1在原发性肿瘤中高表达并促进细胞活力,它在转移中下调。我们进一步表明,CKMT1下调,如在乳腺癌转移中所见,提高线粒体活性氧(ROS)水平。CKMT1下调通过ROS诱导的粘附和降解因子的上调促进细胞的迁移和侵袭潜能,这可以通过抗氧化处理逆转。因此,我们的研究调和了关于代谢产物在肌酸代谢途径在乳腺癌进展中的作用的相互矛盾的证据,CKMT1表达的上下文依赖性调节促进细胞活力,细胞迁移,和细胞入侵,这是转移性扩散的标志。
    Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缺氧诱导因子-1α(HIF1α)减弱线粒体活性,同时促进糖酵解。然而,较低的糖酵解在人类透明细胞肾细胞癌中受损,其中HIF1α通过抑制细胞自主增殖而充当肿瘤抑制剂。这里,我们发现,出乎意料的是,HIF1α抑制甘油醛3-磷酸脱氢酶(GAPDH)步骤后较低的糖酵解,当细胞遇到有限的丙酮酸供应时,例如通常在体内肿瘤微环境中发现的丙酮酸供应,导致不同肿瘤细胞类型中乳酸分泌减少。这是因为线粒体氧消耗的HIF1α依赖性衰减增加了抑制NADH敏感性GAPDH糖酵解酶活性的NADH/NAD比率。这表现在丙酮酸盐供应有限时,因为丙酮酸盐充当电子受体,防止NADH/NAD+比率的增加。此外,这种抗糖酵解功能为解释HIF1α如何通过增加NADH/NAD比率来抑制肿瘤细胞增殖提供了分子基础。
    Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用13C6葡萄糖标记与气相色谱-质谱联用和2D1H-13C异核单量子相干NMR光谱,我们已经获得了支持β细胞功能的葡萄糖命运的比较高分辨率图。在小鼠和人类胰岛中,葡萄糖对三羧酸(TCA)循环的贡献是相似的。TCA循环的丙酮酸燃料主要由丙酮酸脱氢酶的活性介导,通过丙酮酸羧化酶的通量较低。虽然丙酮酸通过乳酸脱氢酶(LDH)转化为乳酸可以在两个物种的胰岛中检测到,乳酸的积累是人类胰岛的6倍。人胰岛表达LDH,具有低-中度LDHA表达和β细胞特异性LDHB表达。LDHB抑制放大小鼠和人β细胞中LDHA依赖性乳酸的产生并增加基础胰岛素的释放。最后,顺式仪器孟德尔随机化显示低LDHB表达水平与人空腹胰岛素升高相关。因此,LDHB限制β细胞中的乳酸生成以维持适当的胰岛素释放。
    Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体功能障碍是许多重大人类疾病的关键原因。特定肠道微生物代谢产物对动物线粒体功能的影响及其潜在机制仍有待揭示。这里,我们报道了细菌肽聚糖肌醇肽在多种哺乳动物模型中促进线粒体功能的重要作用.人肠上皮细胞(IECs)中添加的Muropeptip导致氧化呼吸和ATP产生增加以及氧化应激降低。引人注目的是,muropeptip治疗可恢复线粒体结构和功能,并抑制线粒体疾病患者成纤维细胞的几种病理表型。在老鼠身上,肌肽在IECs的线粒体中积累,并通过调节能量代谢促进小肠稳态和营养吸收。肌肽直接结合ATP合成酶,稳定复合物,并促进其体外酶活性,支持以下假设:muropeptides至少部分通过充当ATP合酶激动剂来促进线粒体稳态。这项研究揭示了人类线粒体疾病的潜在治疗方法。
    Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由炎性细胞因子或Toll样受体配体诱导的非规范脂解是内毒素血症和败血症期间炎症调节所必需的。由于包括淋巴细胞扩增在内的因素,儿茶酚胺诱导的典型脂解在衰老过程中下降,促炎巨噬细胞极化,和慢性低度炎症的增加;然而,在衰老过程中,非经典的脂解途径在多大程度上活跃并受到免疫细胞的影响尚不清楚.因此,我们的目的是确定来自老年小鼠的免疫细胞在脓毒症期间影响非规范脂解的程度.我们确定了老年小鼠内脏白色脂肪组织(vWAT)中非规范脂肪分解和功能失调的B1B细胞积累的年龄相关损伤。B细胞的终身缺乏导致恢复的非规范脂解和促炎巨噬细胞群的减少。我们的研究表明,靶向B细胞-巨噬细胞信号轴可以解决老年vWAT的代谢功能障碍,并减轻老年个体的脓毒症严重程度。
    Non-canonical lipolysis induced by inflammatory cytokines or Toll-like receptor ligands is required for the regulation of inflammation during endotoxemia and sepsis. Canonical lipolysis induced by catecholamines declines during aging due to factors including an expansion of lymphocytes, pro-inflammatory macrophage polarization, and an increase in chronic low-grade inflammation; however, the extent to which the non-canonical pathway of lipolysis is active and impacted by immune cells during aging remains unclear. Therefore, we aimed to define the extent to which immune cells from old mice influence non-canonical lipolysis during sepsis. We identified age-associated impairments of non-canonical lipolysis and an accumulation of dysfunctional B1 B cells in the visceral white adipose tissue (vWAT) of old mice. Lifelong deficiency of B cells results in restored non-canonical lipolysis and reductions in pro-inflammatory macrophage populations. Our study suggests that targeting the B cell-macrophage signaling axis may resolve metabolic dysfunction in aged vWAT and attenuate septic severity in older individuals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    雷帕霉素的胰岛素机制靶标(mTOR)信号在机体发育过程中驱动合成代谢生长;其晚年失调导致衰老并限制寿命。胰岛素mTOR的年龄相关调节机制和功能后果仍未完全了解。这里,我们将LPD-3鉴定为在秀丽隐杆线虫衰老过程中协调胰岛素-mTOR信号传导节奏的大蛋白。我们发现激动剂胰岛素,INS-7在lpd-3突变体中从早期生命中急剧过量产生并缩短寿命。LPD-3形成桥状隧道巨蛋白以促进非囊泡细胞脂质运输。脂质组学分析揭示了lpd-3突变体中六妥酰胺物种的增加,伴随着六酰胺生物合成酶的上调,包括HYL-1。降低HYL-1,胰岛素受体/DAF-2或mTOR/LET-363的丰度,使INS-7水平正常化并挽救lpd-3突变体的寿命。LPD-3拮抗SINH-1,一种关键的mTORC2成分,并随着年龄的增长而减少表达。我们建议LPD-3充当生物体衰老的大蛋白制动,其年龄依赖性下降通过鞘脂-六妥酰胺和胰岛素-mTOR途径限制了寿命。
    Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    短期热量限制(CR)的一个有趣的效果是某些干细胞群体的扩增,包括肌肉干细胞(卫星细胞),这有助于受伤后加速再生程序。这里,我们利用MetRSL274G(MetRS)转基因小鼠鉴定肝脏分泌型纤溶酶原作为短期CR期间调节卫星细胞扩增的候选物.循环纤溶酶原的敲除可防止短期CR期间的卫星细胞扩增。此外,纤溶酶原受体KT(Plg-RKT)的丢失也足以阻止CR相关的卫星细胞扩增,与纤溶酶原通过纤溶酶原受体Plg-RKT/ERK激酶促进卫星细胞增殖的直接信号传导一致。重要的是,我们能够在CALERIE试验的人类参与者中复制许多这些发现.我们的结果表明,CR增强纤溶酶原的肝脏蛋白分泌,通过Plg-RKT直接向肌肉卫星细胞发出信号,以促进CR期间的增殖和随后的肌肉弹性。
    An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号