CP: Metabolism

CP: 代谢
  • 文章类型: Journal Article
    在肿瘤发生中对应激的促存活代谢适应仍然不太明确。我们发现多发性骨髓瘤(MM)在基础和应激条件下都出乎意料地依赖于长链脂肪酸(FA)的β-氧化。然而,在应力条件下,需要第二个促存活信号来维持FA氧化(FAO)。我们先前发现CD28在MM细胞上表达并转导显著的促存活/化疗抗性信号。我们现在发现CD28信号调节自噬/脂质吞噬,涉及Ca2→AMPK→ULK1轴的激活,并通过HuR调节ATG5的翻译,导致持续的吸脂性,增加粮农组织,增强MM生存。相反,阻断自噬/吸脂性使MM对体内化疗敏感。我们的发现将促生存信号与FA可用性联系起来,以维持在压力条件下癌细胞生存所需的FAO,并确定了吸脂性作为克服MMs治疗抵抗的治疗靶标。
    Pro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO). We previously found that CD28 is expressed on MM cells and transduces a significant pro-survival/chemotherapy resistance signal. We now find that CD28 signaling regulates autophagy/lipophagy that involves activation of the Ca2+→AMPK→ULK1 axis and regulates the translation of ATG5 through HuR, resulting in sustained lipophagy, increased FAO, and enhanced MM survival. Conversely, blocking autophagy/lipophagy sensitizes MM to chemotherapy in vivo. Our findings link a pro-survival signal to FA availability needed to sustain the FAO required for cancer cell survival under stress conditions and identify lipophagy as a therapeutic target to overcome treatment resistance in MM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    2型糖尿病(T2DM)的发展与低度慢性2型炎症和葡萄糖稳态紊乱有关。第2组先天淋巴样细胞(ILC2s)通过产生2型细胞因子在维持脂肪稳态中起关键作用。这里,我们证明了CB2,一种G蛋白偶联受体(GPCR)和内源性大麻素系统的成员,在内脏脂肪组织(VAT)衍生的鼠和人ILC2s上表达。此外,我们利用离体和体内方法的组合,在T2DM模型中,探讨CB2参与对VATILC2s的功能和治疗影响.我们的结果表明,CB2刺激ILC2s可以防止胰岛素抵抗发作,改善葡萄糖耐量,并逆转已建立的胰岛素抵抗。我们的机制研究表明,CB2的治疗作用是通过激活AKT介导的,ILC2s上的ERK1/2和CREB途径。结果表明,CB2激动剂可以作为预防和治疗T2DM的候选药物。
    Development of type 2 diabetes mellitus (T2DM) is associated with low-grade chronic type 2 inflammation and disturbance of glucose homeostasis. Group 2 innate lymphoid cells (ILC2s) play a critical role in maintaining adipose homeostasis via the production of type 2 cytokines. Here, we demonstrate that CB2, a G-protein-coupled receptor (GPCR) and member of the endocannabinoid system, is expressed on both visceral adipose tissue (VAT)-derived murine and human ILC2s. Moreover, we utilize a combination of ex vivo and in vivo approaches to explore the functional and therapeutic impacts of CB2 engagement on VAT ILC2s in a T2DM model. Our results show that CB2 stimulation of ILC2s protects against insulin-resistance onset, ameliorates glucose tolerance, and reverses established insulin resistance. Our mechanistic studies reveal that the therapeutic effects of CB2 are mediated through activation of the AKT, ERK1/2, and CREB pathways on ILC2s. The results reveal that the CB2 agonist can serve as a candidate for the prevention and treatment of T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肥胖和2型糖尿病导致棕色脂肪组织(BAT)活性丧失,但是驱动BAT细胞重塑的分子机制在很大程度上仍未被探索。使用多层方法,我们全面绘制了BAT细胞中的重组图。我们发现了一部分巨噬细胞作为脂质相关巨噬细胞(LAMs),在BAT扩展的遗传和饮食模型中大量增加。LAM通过捕获携带从代谢应激的棕色脂肪细胞释放的受损脂质和线粒体的细胞外囊泡来参与这种情况。CD36清道夫受体驱动LAM表型,缺乏CD36的LAM能够增加脂肪细胞中的棕色脂肪基因。LAMs释放转化生长因子β1(TGF-β1),通过醛脱氢酶1家族成员A1(Aldh1a1)诱导促进棕色脂肪细胞身份的丧失。这些发现揭示了肥胖期间BAT的细胞动态变化,并将LAM鉴定为组织代谢应激的关键反应者和棕色脂肪细胞身份丧失的驱动因素。
    Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor β1 (TGF-β1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癌细胞异质性和治疗抗性主要来自代谢和转录适应。但是人们对它们之间的联系知之甚少。这里,我们证明,在黑色素瘤中,癌症干细胞标记醛脱氢酶1A3(ALDH1A3)与细胞核中的乙酰辅酶A(CoA)合成酶2(ACSS2)形成酶促伙伴关系,以将高葡萄糖代谢通量与神经c(NC)谱系和葡萄糖代谢基因的乙酰组蛋白H3修饰偶联。重要的是,我们表明乙醛是乙酰组蛋白H3修饰的代谢物来源,为这种高挥发性和毒性的代谢物提供生理功能。在斑马鱼黑色素瘤残留病模型中,BRAF抑制剂治疗后出现ALDH1高亚群,用ALDH1自杀抑制剂靶向这些药物,硝呋嗪,延迟或防止BRAF抑制剂耐药复发。我们的工作表明,ALDH1A3-ACSS2偶联直接协调核乙醛-乙酰-CoA代谢与特定的基于染色质的基因调控,并代表了黑色素瘤的潜在治疗脆弱性。
    Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高灵敏度纳米低液相色谱(nLC)很少用于非靶向代谢组学,因为当前的样品制备技术在防止纳米毛细管柱性能下降方面效率低下。这里,我们描述了一种基于nLC的串联质谱工作流程,该工作流程能够无缝联合分析和整合来自同一样品的代谢组学(包括脂质组学)和蛋白质组学,而无需仪器重复.该工作流程基于用于常规样品清理和生物活性分子富集的稳健固相微萃取步骤。我们的方法,称为蛋白质组学和纳米低代谢组学分析(PANAMA),与现有广泛使用的分析程序相比,在不影响覆盖深度的情况下提高了化合物的分辨率和检测灵敏度。值得注意的是,PANAMA可以应用于广泛的标本,包括生物流体,细胞系,和组织样本.它产生高质量的,信息丰富的代谢物-蛋白质数据集,同时绕过对专门仪器的需求。
    High-sensitivity nanoflow liquid chromatography (nLC) is seldom employed in untargeted metabolomics because current sample preparation techniques are inefficient at preventing nanocapillary column performance degradation. Here, we describe an nLC-based tandem mass spectrometry workflow that enables seamless joint analysis and integration of metabolomics (including lipidomics) and proteomics from the same samples without instrument duplication. This workflow is based on a robust solid-phase micro-extraction step for routine sample cleanup and bioactive molecule enrichment. Our method, termed proteomic and nanoflow metabolomic analysis (PANAMA), improves compound resolution and detection sensitivity without compromising the depth of coverage as compared with existing widely used analytical procedures. Notably, PANAMA can be applied to a broad array of specimens, including biofluids, cell lines, and tissue samples. It generates high-quality, information-rich metabolite-protein datasets while bypassing the need for specialized instrumentation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    维生素D受体(VDR)与脂肪肝发病机制有关,但是它在调节生物体能量使用中的作用尚不清楚。这里,我们通过证明斑马鱼Vdr通过拮抗调节营养储存和组织生长来协调肝脏和生物体能量稳态,阐明了VDR的进化功能。肝细胞特异性Vdr损伤增加肝脏脂质储存,部分通过ACSL4A感应,同时减少脂肪酸氧化和肝脏生长。重要的是,Vdr损害加剧了饥饿诱导的系统性脂肪酸的肝脏储存,这表明Vdr信号的丢失会导致肝细胞能量缺乏。引人注目的是,肝细胞Vdr损伤减少饮食诱导的全身生长,同时增加成年鱼的肝脏和内脏脂肪,揭示肝Vdr信号传导是完全适应食物供应所必需的。这些数据将肝细胞Vdr确立为生物体能量消耗的调节剂,并将VDR的进化功能定义为环境营养供应的转录效应子。
    Vitamin D receptor (VDR) has been implicated in fatty liver pathogenesis, but its role in the regulation of organismal energy usage remains unclear. Here, we illuminate the evolutionary function of VDR by demonstrating that zebrafish Vdr coordinates hepatic and organismal energy homeostasis through antagonistic regulation of nutrient storage and tissue growth. Hepatocyte-specific Vdr impairment increases hepatic lipid storage, partially through acsl4a induction, while simultaneously diminishing fatty acid oxidation and liver growth. Importantly, Vdr impairment exacerbates the starvation-induced hepatic storage of systemic fatty acids, indicating that loss of Vdr signaling elicits hepatocellular energy deficiency. Strikingly, hepatocyte Vdr impairment diminishes diet-induced systemic growth while increasing hepatic and visceral fat in adult fish, revealing that hepatic Vdr signaling is required for complete adaptation to food availability. These data establish hepatocyte Vdr as a regulator of organismal energy expenditure and define an evolutionary function for VDR as a transcriptional effector of environmental nutrient supply.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铁凋亡是一种以铁依赖性脂质过氧化为特征的调节性细胞死亡。构建了一个模型细胞系统,通过重新表达有效的铁凋亡诱导剂BACH1转录因子来诱导铁凋亡,在永生化小鼠胚胎成纤维细胞(IMEFs)中。来自铁细胞iMEF的培养上清液的转移激活了肝癌细胞和其他成纤维细胞的增殖,并抑制了细胞衰老样特征。在铁细胞iMEFs中,长寿因子FGF21的BACH1依赖性分泌增加。来自这些iMEF的培养上清液的抗衰老作用通过Fgf21敲除而消除。BACH1通过促进铁应激激活Fgf21的转录,并通过转录Sqstm1和Lamp2抑制抑制其自噬降解来增加FGF21蛋白的表达。BACH1诱导的FGF21分泌抑制高脂饮食小鼠的肥胖和早衰小鼠的短寿命。这些衰老相关表型的抑制对于铁死亡可能是生理上显著的。
    Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有了锻炼,肌肉和骨骼产生对大脑有益的因子,脂肪,和其他器官。小鼠的运动增加成纤维细胞生长因子23(FGF23),尿磷酸盐,和肌肉代谢产物L-β-氨基异丁酸(L-BAIBA),提示L-BAIBA可能在磷酸盐代谢中发挥作用。这里,我们显示,L-BAIBA在血清中随着运动而增加,并升高骨细胞中的Fgf23。D对映体,被描述为随着人类的锻炼而升高,也可以诱导Fgf23,但通过延迟,通过硬化素间接过程。两种对映体都通过相同的受体发出信号,Mas相关G蛋白偶联受体D型,但激活不同的信号通路;L-BAIBA通过Gαs/cAMP/PKA/CBP/β-catenin和Gαq/PKC/CREB增加Fgf23,而D-BAIBA通过Gαi/NF-κB通过硬化蛋白间接增加Fgf23。在体内,两种对映体都增加了骨骼中的Fgf23,同时尿磷酸盐排泄增加。因此,运动诱导的BAIBA和FGF23增加共同作用以维持磷酸盐稳态。
    With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多粘菌素通常是针对“关键”病原体鲍曼不动杆菌的唯一有效抗生素。令人担忧的是,高度多粘菌素抗性的鲍曼不动杆菌显示对多粘菌素的依赖已经出现在临床上,导致诊断和治疗失败。这里,我们报告说,精氨酸代谢对多粘菌素依赖性鲍曼不动杆菌至关重要。具体来说,与野生型菌株相比,多粘菌素依赖性菌株的精氨酸降解途径显着改变,与关键代谢物(例如,L-精氨酸和L-谷氨酸)严重耗尽,astABCDE操纵子的表达显着增加。补充精氨酸可增加细菌代谢活性并抑制多粘菌素依赖。删除astA,精氨酸降解途径中的第一个基因,减少磷脂酰甘油和增加磷脂酰乙醇胺水平在外膜,从而减少与多粘菌素的相互作用。本研究阐明了精氨酸代谢影响鲍曼不动杆菌多粘菌素依赖的分子机制。强调其在改善由“无法检测”的多粘菌素依赖性鲍曼不动杆菌引起的危及生命的感染的诊断和治疗中的关键作用。
    Polymyxins are often the only effective antibiotics against the \"Critical\" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by \"undetectable\" polymyxin-dependent A. baumannii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    琥珀酸盐,柠檬酸循环中间,在能量稳态和代谢调节中起着重要的作用。胞外琥珀酸通过琥珀酸受体(SUCNR1)充当应激信号,A类G蛋白偶联受体。由于缺乏激动剂结合的受体的高分辨率结构,因此阻碍了对琥珀酸信号传导的研究。我们介绍了与琥珀酸酯及其非代谢物衍生物顺式环氧琥珀酸酯结合的SUCNR1-Gi复合物的低温电子显微镜(cryo-EM)结构。识别顺式构象琥珀酸的关键决定因素包括R2817.39和Y832.64,而Y301.39和R993.29参与琥珀酸和顺式环氧琥珀酸的结合。胞外环2,通过其β发夹中的F175ECL2,与琥珀酸盐形成氢键并盖住结合袋。在受体-Gi界面,激动剂结合诱导跨膜(TM)5和TM6上疏水网络的重排,导致通过TM3和TM7的TM信号传导。这些发现扩展了我们对SUCNR1对琥珀酸识别的理解,有助于琥珀酸受体治疗剂的开发。
    Succinate, a citric acid cycle intermediate, serves important functions in energy homeostasis and metabolic regulation. Extracellular succinate acts as a stress signal through succinate receptor (SUCNR1), a class A G protein-coupled receptor. Research on succinate signaling is hampered by the lack of high-resolution structures of the agonist-bound receptor. We present cryoelectron microscopy (cryo-EM) structures of SUCNR1-Gi complexes bound to succinate and its non-metabolite derivative cis-epoxysuccinate. Key determinants for the recognition of succinate in cis conformation include R2817.39 and Y832.64, while Y301.39 and R993.29 participate in the binding of both succinate and cis-epoxysuccinate. Extracellular loop 2, through F175ECL2 in its β-hairpin, forms a hydrogen bond with succinate and caps the binding pocket. At the receptor-Gi interface, agonist binding induces the rearrangement of a hydrophobic network on transmembrane (TM)5 and TM6, leading to TM signaling through TM3 and TM7. These findings extend our understanding of succinate recognition by SUCNR1, aiding the development of therapeutics for the succinate receptor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号