Auditory Pathways

听觉通路
  • 文章类型: Journal Article
    听觉空间已被概念化为在上橄榄复合体(SOC)中出现的双耳视差线索的系统排列组合的矩阵。耳间时间和强度差异的计算代码利用了在下丘(IC)中收敛的兴奋性和抑制性投影。挑战是确定这种收敛的神经回路,并对双耳线索如何编码位置进行建模。已经表明,中脑神经元在很大程度上被对侧耳的声音激发,并被同侧耳的声音抑制。在这种情况下,据报道,从外侧上橄榄(LSO)到IC的上升投影是同侧甘氨酸能和对侧谷氨酸能。本研究使用CBA/CaH小鼠(3-6个月大),并将单侧逆行示踪技术与甘氨酸和谷氨酸转运蛋白(分别为GlyT2和vGLUT2)的免疫细胞化学方法结合应用于IC,以分析从LSO到IC的投射模式。甘氨酸能和谷氨酸能神经元在LSO内空间混合,这两种类型都投影到IC。对于GlyT2和vGLUT2神经元,同侧和对侧投射细胞的平均百分比相似(方差分析,p=0.48)。大致相等数量的GlyT2和vGLUT2神经元没有投射到IC。这些神经元的体细胞大小和形状与LSO主细胞的描述相匹配。标记为GlyT2的少量但不同的小(<40μm2)神经元群体没有投射到IC;这些细胞作为抑制性局部回路神经元的候选者出现。我们的发现表明甘氨酸和谷氨酸神经元从LSO到IC的对称和双侧投影。我们的结果与以前的研究结果之间的差异表明,物种和栖息地差异在双耳加工机制中起着重要作用,并强调了研究方法和比较神经科学的重要性。这些数据对于模拟兴奋性和抑制性系统如何会聚以在CBA/CaH小鼠中创建听觉空间将是重要的。
    Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    动物的数字意义包括识别以特定间隔发生的一系列事件的数量,例如,通话或音乐酒吧中的音符。在整个神经系统中,尖峰的时间模式可以编码这些事件,但是这些信息如何被解码(计数)仍然难以捉摸。在无神经听觉系统中,这种类型的时间信息在中脑中被解码,其中“间隔计数”神经元仅在至少阈值数量的声音脉冲以特定时序发生后才会出现尖峰。我们证明了这个解码过程,即,间隔计数,源于相位积分,发作型和抵消型抑制,伴随着在连续间隔中增强的兴奋,可能是由于抑制的“分流”效应逐渐减少。因为这些生理特性在中枢神经系统内和整个中枢神经系统中普遍存在,间隔计数可以是用于解码以尖峰的时间模式编码/编码的各种信息的一般机制,包括“突发”,“并估计经过的时间。
    The numerical sense of animals includes identifying the numerosity of a sequence of events that occur with specific intervals, e.g., notes in a call or bar of music. Across nervous systems, the temporal patterning of spikes can code these events, but how this information is decoded (counted) remains elusive. In the anuran auditory system, temporal information of this type is decoded in the midbrain, where \"interval-counting\" neurons spike only after at least a threshold number of sound pulses have occurred with specific timing. We show that this decoding process, i.e., interval counting, arises from integrating phasic, onset-type and offset inhibition with excitation that augments across successive intervals, possibly due to a progressive decrease in \"shunting\" effects of inhibition. Because these physiological properties are ubiquitous within and across central nervous systems, interval counting may be a general mechanism for decoding diverse information coded/encoded in temporal patterns of spikes, including \"bursts,\" and estimating elapsed time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长老会,或年龄相关的听力损失,影响老年人和狗,显著损害他们的社交互动和认知。在人类中,老年性耳聋涉及周围和中枢听觉系统的变化,中央变化可能独立发生。虽然狗的外周性老年性耳聋是有据可查的,关于中央变化的研究仍然有限。扩散张量成像(DTI)是检测和量化脑白质异常的有用工具。本研究使用DTI探索老年犬的中枢听觉通路,旨在提高我们对犬类老年性耳聋的认识。招募超过预期寿命75%的狗,并通过脑干听觉诱发反应测试进行筛查,以选择没有严重周围听力损失的狗。使用3T磁共振扫描仪扫描16只符合标准的狗。基于轨迹的空间统计用于分析中枢听觉通路。在声辐射中发现分数寿命与分数各向异性之间存在显着负相关。提示中枢听觉系统中与年龄相关的白质变化。这些变化,在没有严重周围听力损失的狗中观察到,可能有助于中央长老会的发展。
    Presbycusis, or age-related hearing loss, affects both elderly humans and dogs, significantly impairing their social interactions and cognition. In humans, presbycusis involves changes in peripheral and central auditory systems, with central changes potentially occurring independently. While peripheral presbycusis in dogs is well-documented, research on central changes remains limited. Diffusion tensor imaging (DTI) is a useful tool for detecting and quantifying cerebral white matter abnormalities. This study used DTI to explore the central auditory pathway of senior dogs, aiming to enhance our understanding of canine presbycusis. Dogs beyond 75% of their expected lifespan were recruited and screened with brainstem auditory evoked response testing to select dogs without severe peripheral hearing loss. Sixteen dogs meeting the criteria were scanned using a 3 T magnetic resonance scanner. Tract-based spatial statistics was used to analyze the central auditory pathways. A significant negative correlation between fractional lifespan and fractional anisotropy was found in the acoustic radiation, suggesting age-related white matter changes in the central auditory system. These changes, observed in dogs without severe peripheral hearing loss, may contribute to central presbycusis development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究的目的是调查成人感染COVID-19后的外周和中枢听觉通路。
    方法:共有44名年龄在19至58岁之间的人,两种性别,COVID-19感染后,通过血清学测试证实,以前没有听力投诉,也没有听力损失的危险因素,被评估。所有参与者都接受了以下程序:纯音测听,测听仪,immitanciometry,和脑干听觉诱发电位(BAEP),除了回答关于听觉症状的问卷。
    结果:有13个人(29.5%)有一些听力阈值损害,主要是感音神经性听力损失.在BAEP中,18人(40.9%)的等待时间较长,主要在第三波和第五波。根据问卷答案,3人(9.1%)报告听力恶化,感染后出现耳鸣7人(15.9%)。至于在治疗期间使用耳毒性药物,7个人(15.9%)报告了他们的使用情况,其中5例显示外周和/或中枢听觉评估异常。
    结论:考虑到COVID-19感染后自我报告的听力投诉以及在周围和中枢听力学评估中发现的高异常率,提示新型COVID-19可能损害听觉系统。由于这项研究涉及许多变量,应谨慎考虑结果。然而,必须对COVID-19后患者进行听力学评估,以便在短期内评估感染的影响,中等,和长期。未来的纵向研究对于更好地理解COVID-19的听觉后果很重要。
    The purpose of this study was to investigate the peripheral and central auditory pathways in adult individuals after COVID-19 infection.
    A total of 44 individuals aged between 19 and 58 years, of both genders, post-COVID-19 infection, confirmed by serological tests, with no previous hearing complaints and no risk factors for hearing loss, were assessed. All the participants underwent the following procedures: pure tone audiometry, logoaudiometry, immitanciometry, and Brainstem Auditory Evoked Potentials (BAEP), in addition to answering a questionnaire about auditory symptoms.
    Thirteen individuals (29.5 %) had some hearing threshold impairment, mainly sensorineural hearing loss. In the BAEP, 18 individuals (40.9 %) presented longer latencies, mainly in waves III and V. According to the questionnaire answers, 3 individuals (9.1 %) reported worsened hearing and 7 (15.9 %) tinnitus that emerged after the infection. As for the use of ototoxic drugs during treatment, 7 individuals (15.9 %) reported their use, of which 5 showed abnormalities in peripheral and/or central auditory assessments.
    Considering the self-reported hearing complaints after COVID-19 infection and the high rate of abnormalities found in both peripheral and central audiological assessments, it is suggested that the new COVID-19 may compromise the auditory system. Due to the many variables involved in this study, the results should be considered with caution. However, it is essential that audiological evaluations are carried out on post-COVID-19 patients in order to assess the effects of the infection in the short, medium, and long term. Future longitudinal investigations are important for a better understanding of the auditory consequences of COVID-19.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究调查了功能性近红外光谱(fNIRS)对16名睡眠婴儿测得的语音声音的反应形态,以及它如何随着重复的刺激表现而变化。我们观察到一个正峰,然后是一个宽的负谷,后者在早期最明显。我们认为,整体反应形态捕获了两个同时,但独立,在刺激开始时都被激活的反应机制:一种是听觉系统对声音刺激的强制性反应,另一种是唤醒系统引起的神经抑制作用。因为这两种效应在重复的时期表现不同,可以在数学上将它们分开,并使用fNIRS研究影响婴儿唤醒系统发育和激活的因素。结果还暗示,需要调整标准fNIRS分析技术,以考虑多个同时激活大脑系统的可能性,并且对刺激的反应不一定是静止的。
    This study investigated the morphology of the functional near-infrared spectroscopy (fNIRS) response to speech sounds measured from 16 sleeping infants and how it changes with repeated stimulus presentation. We observed a positive peak followed by a wide negative trough, with the latter being most evident in early epochs. We argue that the overall response morphology captures the effects of two simultaneous, but independent, response mechanisms that are both activated at the stimulus onset: one being the obligatory response to a sound stimulus by the auditory system, and the other being a neural suppression effect induced by the arousal system. Because the two effects behave differently with repeated epochs, it is possible to mathematically separate them and use fNIRS to study factors that affect the development and activation of the arousal system in infants. The results also imply that standard fNIRS analysis techniques need to be adjusted to take into account the possibilities of multiple simultaneous brain systems being activated and that the response to a stimulus is not necessarily stationary.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    声刺激的编码需要精确的神经元定时。耳蜗核(CN)和脑干中的听觉神经元非常适合准确分析快速声学信号,鉴于他们对快速膜时间常数的生理专长,快速轴突传导,和可靠的突触传递.提供耳蜗传出抑制的内侧橄榄耳蜗(MOC)神经元位于腹侧脑干中,并参与这些快速神经回路。然而,它们对耳蜗功能的调节发生在较慢性质的时间尺度上。这表明存在降低MOC抑制耳蜗功能的机制。为了确定单耳兴奋性和抑制性突触输入如何整合以影响MOC神经元活动的时间,我们开发了一种新型的体外切片制备方法(“楔形切片”)。楔形切片保持上升的听觉神经根,整个CN和突出的轴突,同时保留了从遗传鉴定的MOC神经元进行视觉引导的膜片钳电生理记录的能力。楔形切片的“体内样”时序表明,当上升回路完好无损时,抑制途径相对于兴奋性途径加速,并且抑制性电路的CN部分精确到足以补偿后期突触中降低的精度。当与机器学习PSC分析和计算建模相结合时,当抑制发生在体内时,我们证明了MOC神经元活性的更大抑制。MOC活动的这种延迟可能会确保MOC系统仅由持续的背景声音参与,防止适应不良的耳蜗活动过度抑制。重要性声明听觉脑干神经元专门用于速度和保真度,以编码声音的快速特征。极快的抑制有助于精确的脑干声音编码。该电路还投射到抑制耳蜗功能的内侧橄榄耳蜗(MOC)传出神经元,以增强对背景声音中信号的检测。使用具有完整上升电路的新型脑切片制剂,我们表明MOC神经元的抑制也可以非常快,电路的速度定位于耳蜗核。与其他脑干听觉回路的快速抑制所提供的精度增强相反,相反,对MOC神经元的抑制具有延迟和去同步活动的可变发作,从而降低了慢速的精度,对背景声音的持续反应。
    The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits. However, their modulation of cochlear function occurs over time scales of a slower nature. This suggests the presence of mechanisms that reduce MOC inhibition of cochlear function. To determine how monaural excitatory and inhibitory synaptic inputs integrate to affect the timing of MOC neuron activity, we developed a novel in vitro slice preparation (\"wedge-slice\"). The wedge-slice maintains the ascending auditory nerve root, the entire CN and projecting axons, while preserving the ability to perform visually guided patch-clamp electrophysiology recordings from genetically identified MOC neurons. The \"in vivo-like\" timing of the wedge-slice demonstrates that the inhibitory pathway accelerates relative to the excitatory pathway when the ascending circuit is intact, and the CN portion of the inhibitory circuit is precise enough to compensate for reduced precision in later synapses. When combined with machine learning PSC analysis and computational modeling, we demonstrate a larger suppression of MOC neuron activity when the inhibition occurs with in vivo-like timing. This delay of MOC activity may ensure that the MOC system is only engaged by sustained background sounds, preventing a maladaptive hypersuppression of cochlear activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据听觉外围和小头部尺寸,伊特鲁里亚(Suncusetruscus)近似祖先哺乳动物条件。这种食虫动物的听觉脑干尚未得到研究。使用贴标技术,我们评估了它们的上橄榄复合体(SOC)的结构和外侧圆心(NLL)的核。在那里,我们确定了主要原子核的位置,他们的输入模式,发射机内容,钙结合蛋白(CaBPs)和两个电压门控离子通道的表达。最突出的SOC结构是梯形体(MNTB)的内侧核,梯形体(LNTB)的外侧核,外侧上橄榄(LSO)和上旁橄榄核(SPN)。在NLL中,腹侧(VNLL),特定的腹外侧VNLL(VNLLvl)细胞群,中间(INLL)和背侧(DNLL)核,以及下丘的中央方面被辨别。INLL和VNLL通过各种标记蛋白的差异分布而清楚地分离。大多数标记的蛋白质显示与啮齿动物相当的表达模式。然而,SPN神经元是甘氨酸能的,而不是GABA能的,并且整体CaBP表达较低。在伊特鲁里亚人听觉脑干的特征旁边,我们的工作确定了保守的原子核,并指出了接近祖先条件的物种中的可变结构。
    Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL). There, we identified the position of the major nuclei, their input pattern, transmitter content, expression of calcium binding proteins (CaBPs) and two voltage-gated ion channels. The most prominent SOC structures were the medial nucleus of the trapezoid body (MNTB), the lateral nucleus of the trapezoid body (LNTB), the lateral superior olive (LSO) and the superior paraolivary nucleus (SPN). In the NLL, the ventral (VNLL), a specific ventrolateral VNLL (VNLLvl) cell population, the intermediate (INLL) and dorsal (DNLL) nucleus, as well as the inferior colliculus\'s central aspect were discerned. INLL and VNLL were clearly separated by the differential distribution of various marker proteins. Most labelled proteins showed expression patterns comparable to rodents. However, SPN neurons were glycinergic and not GABAergic and the overall CaBPs expression was low. Next to the characterisation of the Etruscan shrew\'s auditory brainstem, our work identifies conserved nuclei and indicates variable structures in a species that approximates ancestral conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将感官输入及其后果联系起来是一种基本的大脑操作。在行为期间,新皮层和边缘系统的神经活动通常反映感觉和任务相关变量的动态组合,这些“混合表示”被认为对感知很重要,学习,和可塑性。然而,这种综合计算可能发生在前脑之外的程度尚不清楚。这里,我们在下丘(IC)的浅表“壳”层中进行细胞分辨率双光子Ca2成像,作为任何性别的头部固定小鼠执行基于奖励的心理测量听觉任务。我们发现单个壳IC神经元的活动共同反映了听觉线索,老鼠的行动,和行为试验结果,这样,神经群体活动的轨迹根据小鼠的行为选择而不同。因此,在shellIC神经元活动上训练的简单分类器模型可以预测逐个试验的结果,即使训练数据仅限于在小鼠的器械作用之前发生的神经活动。因此,表现老鼠,听觉中脑神经元传递一种反映声音联合表示的群体代码,行动,和任务相关变量。意义陈述在IC的表面“壳”层中的神经元优先投射到由声音及其后果强烈激活的高阶丘脑核,从而结合感官和任务相关信息。这种感觉-行为整合被认为对各种行为相关功能至关重要,例如建立学习的合理价。然而,这种“混合表示”是否反映了丘脑皮层网络的独特性质,或者更确切地说存在于其他地区,不清楚。我们证明了在表现老鼠时,许多外壳IC神经元是由声音和老鼠的动作调制的。因此,shellIC群体活动足以在奖励行动之前预测试验结果。因此,我们的数据将壳IC核确定为与行为相关的混合表征的新颖场所。
    Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these \"mixed representations\" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial \"shell\" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice\'s actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice\'s behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice\'s instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    斑马鱼,神经生物学中广泛使用的模型,依赖于在水生环境中的听力。不幸的是,其听觉通路主要在幼虫中进行研究。在这项研究中,我们检查了成年斑马鱼的前结节核(AT)在听觉过程中的参与。我们的道追踪实验表明,AT的背侧细分强烈地双向连接到半圆环(TSc)的中央核,鱼类的主要听觉核。核糖体蛋白S6(pS6)磷酸化的免疫组织化学可视化以映射对听觉刺激的神经活性,证实了这一发现:AT的背侧而不是腹侧对听觉刺激的反应强烈。对听觉刺激的类似反应存在于TSc中,但不存在于峡核(NI)中,一个视觉区域,我们将其用作对照,以测试pS6激活是否特定于听觉刺激。我们还测量了pS6磷酸化的时间过程,以前在硬骨鱼中没有报道过。听觉刺激后,我们发现pS6磷酸化在100-130分钟达到峰值,190分钟后恢复至基线水平.这些信息对于将来pS6实验的设计将是有价值的。我们的结果表明AT的解剖和功能细分,只有背侧部分连接到听觉网络并处理听觉信息。重要声明我们调查了斑马鱼前结节核在听觉处理中的参与。我们的研究揭示了该区域的功能和解剖细分。我们表明,它的背侧细分与半圆环的中央核紧密相连,鱼类的主要听觉核。pS6磷酸化,作为听觉刺激后神经元活动的间接标记,证实只有背侧前结节核,处理听觉信息。我们还表明,在听觉刺激之后,pS6磷酸化在100-130分钟之间达到峰值,并在190分钟后恢复到基线水平,为未来的研究提供有价值的信息。
    The zebrafish, a widely used model in neurobiology, relies on hearing in aquatic environments. Unfortunately, its auditory pathways have mainly been studied in larvae. In this study, we examined the involvement of the anterior tuberal nucleus (AT) in auditory processing in adult zebrafish. Our tract-tracing experiments revealed that the dorsal subdivision of AT is strongly bidirectionally connected to the central nucleus of the torus semicircularis (TSc), a major auditory nucleus in fishes. Immunohistochemical visualization of the ribosomal protein S6 (pS6) phosphorylation to map neural activity in response to auditory stimulation substantiated this finding: the dorsal but not the ventral part of AT responded strongly to auditory stimulation. A similar response to auditory stimulation was present in the TSc but not in the nucleus isthmi, a visual region, which we used as a control for testing if the pS6 activation was specific to the auditory stimulation. We also measured the time course of pS6 phosphorylation, which was previously unreported in teleost fish. After auditory stimulation, we found that pS6 phosphorylation peaked between 100 and 130 min and returned to baseline levels after 190 min. This information will be valuable for the design of future pS6 experiments. Our results suggest an anatomical and functional subdivision of AT, where only the dorsal part connects to the auditory network and processes auditory information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    外周和中枢听觉系统之间的生理相互作用对于听觉信息传递和感知至关重要,虽然目前缺乏可靠的听觉神经回路模型。为了解决这个问题,利用碳纳米管纳米纤维系统产生小鼠和人的神经通路。支架的超对齐图案使得双极和多极神经元的轴突在平行方向上延伸。此外,支架的导电性维持小鼠初级听觉神经元的电生理活动。然后将来自系统中外周和中枢听觉单元的小鼠和人类原代神经元共培养,并表明这两种神经元形成突触连接。此外,耳蜗和听觉皮层的神经祖细胞来源于人类胚胎以产生特定区域的类器官,并且这些类器官在纳米纤维组合的3D系统中组装。使用光遗传学刺激,钙成像,和电生理记录,揭示了外周神经元和中枢神经元之间形成功能性突触连接,钙掺杂和突触后电流证明了这一点。听觉回路模型将使听觉神经通路的研究成为可能,并促进对感觉神经性听力损失中神经元连接障碍的治疗策略的寻找。
    The physiological interactions between the peripheral and central auditory systems are crucial for auditory information transmission and perception, while reliable models for auditory neural circuits are currently lacking. To address this issue, mouse and human neural pathways are generated by utilizing a carbon nanotube nanofiber system. The super-aligned pattern of the scaffold renders the axons of the bipolar and multipolar neurons extending in a parallel direction. In addition, the electrical conductivity of the scaffold maintains the electrophysiological activity of the primary mouse auditory neurons. The mouse and human primary neurons from peripheral and central auditory units in the system are then co-cultured and showed that the two kinds of neurons form synaptic connections. Moreover, neural progenitor cells of the cochlea and auditory cortex are derived from human embryos to generate region-specific organoids and these organoids are assembled in the nanofiber-combined 3D system. Using optogenetic stimulation, calcium imaging, and electrophysiological recording, it is revealed that functional synaptic connections are formed between peripheral neurons and central neurons, as evidenced by calcium spiking and postsynaptic currents. The auditory circuit model will enable the study of the auditory neural pathway and advance the search for treatment strategies for disorders of neuronal connectivity in sensorineural hearing loss.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号