Anticodon

反密码子
  • 文章类型: Journal Article
    T-box核糖开关是参与大多数革兰氏阳性细菌遗传调控的非编码RNA元件。它们通过评估tRNA的氨基酰化状态来调节氨基酸代谢,随后影响下游氨基酸代谢相关基因的转录或翻译。在这里,我们介绍了结核分枝杆菌IleST盒核糖开关的单分子FRET研究,一个范式的平移T盒。结果支持两步绑定模型,首先识别tRNA反密码子,其次是与NCCA序列的相互作用。此外,反密码子识别后,即使在不存在tRNANCCA-鉴别器相互作用的情况下,tRNA也可以瞬时对接到鉴别器结构域中。NCCA-鉴别器相互作用的建立显著稳定了完全结合态。总的来说,数据表明翻译T-box核糖开关具有高度的构象灵活性;并支持NCCA识别的构象选择模型。这些发现提供了一个动力学框架,以了解特定的RNA元件如何支持基因调控所需的结合亲和力和特异性。
    T-box riboswitches are noncoding RNA elements involved in genetic regulation of most Gram-positive bacteria. They regulate amino acid metabolism by assessing the aminoacylation status of tRNA, subsequently affecting the transcription or translation of downstream amino acid metabolism-related genes. Here we present single-molecule FRET studies of the Mycobacterium tuberculosis IleS T-box riboswitch, a paradigmatic translational T-box. Results support a two-step binding model, where the tRNA anticodon is recognized first, followed by interactions with the NCCA sequence. Furthermore, after anticodon recognition, tRNA can transiently dock into the discriminator domain even in the absence of the tRNA NCCA-discriminator interactions. Establishment of the NCCA-discriminator interactions significantly stabilizes the fully bound state. Collectively, the data suggest high conformational flexibility in translational T-box riboswitches; and supports a conformational selection model for NCCA recognition. These findings provide a kinetic framework to understand how specific RNA elements underpin the binding affinity and specificity required for gene regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表位转录组包括影响基因表达的多种RNA修饰。N3-甲基胞苷(m3C)主要存在于某些tRNA的反密码子环(位置C32)中,但对其作用知之甚少。这里,使用HAC-Seq,我们报告了全面的METTL2A/2B-,METTL6-,和METTL2A/2B/6依赖性m3C在人细胞中的分布。METTL2A/2B修饰tRNA-精氨酸和tRNA-苏氨酸成员,而METTL6修饰了tRNA-丝氨酸家族。然而,tRNA-Ser-GCT等解码器上的m3C32减少仅在组合METTL2A/2B/6缺失时观察到。Ribo-Seq揭示了METTL2A/2B/6缺陷细胞中与细胞周期和DNA修复途径相关的基因翻译的改变,并且这些mRNA富集在需要tRNA-Ser-GCT进行翻译的AGU密码子中。这些结果,由报告检测支持,帮助解释观察到的细胞周期改变,减缓增殖,METTL2A/2B/6缺陷细胞的顺铂敏感性表型增加。因此,我们定义了METTL2A/2B/6依赖的甲基化组,并揭示了m3C32tRNA修饰对于细胞周期的丝氨酸密码子偏向性mRNA翻译的特殊要求,和DNA修复基因.
    The epitranscriptome includes a diversity of RNA modifications that influence gene expression. N3-methylcytidine (m3C) mainly occurs in the anticodon loop (position C32) of certain tRNAs yet its role is poorly understood. Here, using HAC-Seq, we report comprehensive METTL2A/2B-, METTL6-, and METTL2A/2B/6-dependent m3C profiles in human cells. METTL2A/2B modifies tRNA-arginine and tRNA-threonine members, whereas METTL6 modifies the tRNA-serine family. However, decreased m3C32 on tRNA-Ser-GCT isodecoders is only observed with combined METTL2A/2B/6 deletion. Ribo-Seq reveals altered translation of genes related to cell cycle and DNA repair pathways in METTL2A/2B/6-deficient cells, and these mRNAs are enriched in AGU codons that require tRNA-Ser-GCT for translation. These results, supported by reporter assays, help explain the observed altered cell cycle, slowed proliferation, and increased cisplatin sensitivity phenotypes of METTL2A/2B/6-deficient cells. Thus, we define METTL2A/2B/6-dependent methylomes and uncover a particular requirement of m3C32 tRNA modification for serine codon-biased mRNA translation of cell cycle, and DNA repair genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中心教条将核糖体视为一种分子机器,当它将每个氨基酸添加到其生长的肽链时,一次读取一个mRNA密码子。然而,本研究和先前的研究表明,核糖体实际上感知成对的相邻密码子,因为它们沿着mRNA采取三个核苷酸的步骤。我们检查了GNN密码子,我们发现,在真核生物蛋白质编码开放阅读框(ORF)中,尤其是在NNU密码子之后。酵母中的核糖体谱分析实验表明,当NNU紧随GNN密码子(3')时,在其氨基酰基(A)位点具有NNU的核糖体密度特别高,表明NNU密码子从核糖体A到肽基(P)位点的mRNA穿线较慢。此外,如果评估仅限于最近才到达下一个密码子的核糖体,通过检查21个核苷酸的核糖体足迹(21-ntRFP),当跟随GNN时,观察到多个密码子类别的密度升高。相邻的5'-NNNGNN密码子对的这种惊人的翻译减慢可能是介导的,在某种程度上,通过核糖体的汽车表面,在核糖体易位过程中充当A位点tRNA反密码子的延伸,并通过氢键和pi堆叠与GNN密码子相互作用。5'-NNNGNN密码子邻接的功能后果预计会影响蛋白质编码序列的进化。
    The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3\') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome\'s A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5\'-NNN GNN codon pairs is likely mediated, in part, by the ribosome\'s CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5\'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    遗传密码由61个编码20个氨基酸的密码子组成。这些密码子由在蛋白质合成过程中与特定密码子结合的转移RNA(tRNA)识别。由于碱基对摆动,所有生物体利用少于全部61种可能的反密码子:与密码子在其第三个核苷酸处具有错配的能力。先前的研究观察到细菌的tRNA池与其各自环境的温度之间存在相关性。然而,目前尚不清楚这些模式是否代表生物适应,以维持不同环境中蛋白质合成的效率和准确性。mRNA翻译的机械数学模型用于基于生物体的tRNA池定量每个密码子的预期伸长率和错误率。对一系列细菌进行比较分析,以量化环境温度对tRNA库进化的影响。我们发现,嗜热菌通常比中温菌或嗜冷菌在其tRNA池中代表更多的反密码子。根据我们的模型,这种增加的多样性预计会导致错觉错误的增加。讨论了这对嗜热菌中蛋白质进化的影响。
    The genetic code consists of 61 codons coding for 20 amino acids. These codons are recognized by transfer RNAs (tRNAs) that bind to specific codons during protein synthesis. All organisms utilize less than all 61 possible anticodons due to base pair wobble: the ability to have a mismatch with a codon at its third nucleotide. Previous studies observed a correlation between the tRNA pool of bacteria and the temperature of their respective environments. However, it is unclear if these patterns represent biological adaptations to maintain the efficiency and accuracy of protein synthesis in different environments. A mechanistic mathematical model of mRNA translation is used to quantify the expected elongation rates and error rate for each codon based on an organism\'s tRNA pool. A comparative analysis across a range of bacteria that accounts for covariance due to shared ancestry is performed to quantify the impact of environmental temperature on the evolution of the tRNA pool. We find that thermophiles generally have more anticodons represented in their tRNA pool than mesophiles or psychrophiles. Based on our model, this increased diversity is expected to lead to increased missense errors. The implications of this for protein evolution in thermophiles are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ser/Leu交换的遗传密码可以充当遗传防火墙,减轻转基因生物中水平基因转移引起的生物危害风险。我们先前的工作使用由21个体外转录的tRNA组成的无细胞翻译系统证明了这种交换的代码与标准遗传代码的正交性。在这项研究中,为了推进这个蛋白质工程系统,我们介绍了一个天然/体外转录-杂交的tRNA组。这一组结合了来自大肠杆菌的天然tRNA(不包括Ser,Leu,和Tyr)和体外转录的tRNA,包括反密码子交换的tRNASerGAG和tRNALeuGGA。这种方法将所需的体外转录tRNA的数量从21个减少到仅4个。在这个优化的系统中,模型蛋白质的生产,superfolder绿色荧光蛋白,增加到3.5倍。有了这个杂种tRNA集,Ser/Leu交换的无细胞翻译系统将成为蛋白质生产的有效工具,并减少未来生物学工作中的生物危害问题。
    The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNASerGAG and tRNALeuGGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA修饰对tRNA功能有重大影响,反密码子环中的修饰有助于翻译保真度,而tRNA核心中的修饰会影响结构稳定性。在细菌中,tRNA修饰对于响应应激和调节毒力因子的表达至关重要。尽管tRNA修饰在一些模型生物中得到了很好的表征,我们对人类病原体中tRNA修饰的了解,比如铜绿假单胞菌,仍然有限。在这里,我们利用两种正交方法来构建大肠杆菌中tRNA修饰的参考景观,这使我们能够在铜绿假单胞菌中鉴定出类似的修饰。我们的分析揭示了两种生物之间的高度保守性,同时还揭示了铜绿假单胞菌tRNA中不存在于大肠杆菌中的tRNA修饰的潜在位点。这些位点之一的突变特征,tRNAGln1(UUG)的位置46依赖于TapT的铜绿假单胞菌同源物,负责3-(3-氨基-3-羧基丙基)尿苷(acp3U)修饰的酶。确定哪些修饰存在于不同的tRNA上,将揭示受不同的tRNA修饰酶影响的途径。其中一些在确定毒力和致病性方面发挥作用。
    RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here, we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in Escherichia coli, which enabled us to identify similar modifications in P. aeruginosa Our analysis supports a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA-modifying enzymes, some of which play roles in determining virulence and pathogenicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体将3'-氨酰基-tRNA和3'-肽基-tRNA结合在一起,以通过两种主要方式结合它们来实现肽基转移。首先,它们的反密码子环与mRNA结合,本身锚定在核糖体亚基界面,通过连续反密码子:通过与小核糖体亚基的解码中心相互作用而增强的密码子配对。第二,它们的受体茎被肽基转移酶中心结合,它将3'-氨基酰基和3'-肽基末端对齐,以实现亲核氨基和亲电酯羰基的最佳相互作用。推断固有密码子:反密码子结合可能是在核糖体肽合成的早期阶段使tRNA3'末端接近的主要原因,我们想知道原始氨基酸是否被分配给那些与相应反密码子环最紧密结合的密码子。通过测量反密码子茎环与短寡核苷酸的结合,我们确定,家族盒密码子:反密码子配对通常比分裂盒密码子:反密码子配对更紧密。此外,我们发现两个家族盒反密码子茎环可以同时与一对相邻的密码子紧密结合,而两个分裂盒反密码子茎环不能。分配给家族盒子的氨基酸对应于那些被称为氰硫化物化学的氨基酸,支持这些有限的氨基酸可能是原始编码肽合成中首次使用的论点。
    The ribosome brings 3\'-aminoacyl-tRNA and 3\'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3\'-aminoacyl- and 3\'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3\'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    VI型CRISPR-Cas系统是少数仅靶向RNA的CRISPR变种之一。CRISPRRNA指导,靶RNA的序列特异性结合,比如噬菌体转录物,激活类型VI效应器,Cas13一旦激活,Cas13导致附带RNA裂解,诱导细菌细胞休眠,从而保护宿主群体免受噬菌体传播。我们在这里表明,在大肠杆菌细胞中表达的shahiiLeptotrichiaCas13a引起的附带RNA降解的主要形式是在具有富含尿苷的反密码子的转移RNA(tRNA)子集中切割反密码子。这种tRNA切割伴随着蛋白质合成的抑制,从而为噬菌体提供防御。此外,Cas13a介导的tRNA切割间接激活细菌毒素-抗毒素模块切割信使RNA的RNA酶,可以提供后备防御。Cas13a诱导的抗噬菌体防御机制类似于细菌反密码子核酸酶,这与以下假设相符:VI型效应子是从包含反密码子核酸酶的流产感染模块进化而来的。
    Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread. We show here that the principal form of collateral RNA degradation elicited by Leptotrichia shahii Cas13a expressed in Escherichia coli cells is the cleavage of anticodons in a subset of transfer RNAs (tRNAs) with uridine-rich anticodons. This tRNA cleavage is accompanied by inhibition of protein synthesis, thus providing defense from the phages. In addition, Cas13a-mediated tRNA cleavage indirectly activates the RNases of bacterial toxin-antitoxin modules cleaving messenger RNA, which could provide a backup defense. The mechanism of Cas13a-induced antiphage defense resembles that of bacterial anticodon nucleases, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module encompassing an anticodon nuclease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    翻译保真度依赖于氨基酰基-tRNA合成酶(AARSs)对转移RNA(tRNA)的准确氨基酰化。AARSs特异于丙氨酸(Ala),亮氨酸(Leu),丝氨酸,和吡咯赖氨酸不识别反密码子碱基。其同源tRNA中的单核苷酸反密码子变体可导致误译。人类基因组包括罕见和更常见的误译tRNA变体。我们研究了三种罕见的人类tRNALeu变体,它们在苯丙氨酸或色氨酸密码子处错误掺入了Leu。在正常条件下或在蛋白酶体抑制的情况下,神经母细胞瘤细胞中每个tRNALeu反密码子变体的表达都会导致荧光蛋白产生的缺陷,而不会显着增加细胞毒性。使用tRNA测序和质谱,我们证实了每个tRNALeu变体都被表达并产生了与Leu的误译。为了探究整个遗传密码对Leu错误合并的灵活性,我们创建了64个酵母菌株,在多西环素诱导系统中表达所有可能的tRNALeu反密码子变体.虽然一些变体显示轻度或无生长缺陷,许多反密码子变体,在35和36位富含G/C,包括用脯氨酸代替Leu,精氨酸丙氨酸,或者甘氨酸,导致经济增长大幅下降。观察到具有同义反密码子的tRNALeu突变体和具有相同反密码子的不同tRNALeu异受体的差异表型缺陷。与tRNAAla反密码子变体的比较表明,在几乎每个密码子处,Ala错误掺入比Leu更可耐受。数据表明,氨基酸取代的性质,tRNA基因,和反密码子都是影响细胞耐受误译tRNA能力的重要因素。
    Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    β-氨基酸在新生肽中的核糖体掺入效率远低于经典α-氨基酸。为了克服这一点,我们设计了一个带有tRNAGlu的T-茎和tRNAPro1的D-臂的tRNA嵌合体,称为tRNAPro1E2,它有效地募集EF-Tu和EF-P。使用tRNAPro1E2确实改善了β-氨基酸掺入。然而,β-氨基酸的多次/连续掺入仍然不利地较差。这里,我们尝试对tRNAPro1E2的反密码子臂进行微调,旨在进一步增强β-氨基酸的掺入。通过筛选引入tRNAPro1E2的各种突变,C31G39/C28G42突变显示CCG密码子处连续两次掺入β-高苯基甘氨酸(βPhg)的大约3倍增强。这种tRNA的使用使得第一次有可能延长多达十个连续的βPhg。由于反密码子臂突变的增强效果因用于β-氨基酸掺入的密码子而异,我们优化了五个密码子的反密码子臂序列(CCG,CAU,CAG,ACU和UGG)。这些密码子的五种最佳tRNA的组合使得有可能将五种不同种类的β-氨基酸和类似物同时引入模型肽中。包括大环支架。该策略将使含有多个β-氨基酸的大环肽文库的核糖体合成成为可能。
    Ribosomal incorporation of β-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved β-amino acid incorporation. However, multiple/consecutive incorporations of β-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of β-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of β-homophenylglycine (βPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive βPhg\'s. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for β-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of β-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple β-amino acids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号