Anticodon

反密码子
  • 文章类型: Journal Article
    表位转录组包括影响基因表达的多种RNA修饰。N3-甲基胞苷(m3C)主要存在于某些tRNA的反密码子环(位置C32)中,但对其作用知之甚少。这里,使用HAC-Seq,我们报告了全面的METTL2A/2B-,METTL6-,和METTL2A/2B/6依赖性m3C在人细胞中的分布。METTL2A/2B修饰tRNA-精氨酸和tRNA-苏氨酸成员,而METTL6修饰了tRNA-丝氨酸家族。然而,tRNA-Ser-GCT等解码器上的m3C32减少仅在组合METTL2A/2B/6缺失时观察到。Ribo-Seq揭示了METTL2A/2B/6缺陷细胞中与细胞周期和DNA修复途径相关的基因翻译的改变,并且这些mRNA富集在需要tRNA-Ser-GCT进行翻译的AGU密码子中。这些结果,由报告检测支持,帮助解释观察到的细胞周期改变,减缓增殖,METTL2A/2B/6缺陷细胞的顺铂敏感性表型增加。因此,我们定义了METTL2A/2B/6依赖的甲基化组,并揭示了m3C32tRNA修饰对于细胞周期的丝氨酸密码子偏向性mRNA翻译的特殊要求,和DNA修复基因.
    The epitranscriptome includes a diversity of RNA modifications that influence gene expression. N3-methylcytidine (m3C) mainly occurs in the anticodon loop (position C32) of certain tRNAs yet its role is poorly understood. Here, using HAC-Seq, we report comprehensive METTL2A/2B-, METTL6-, and METTL2A/2B/6-dependent m3C profiles in human cells. METTL2A/2B modifies tRNA-arginine and tRNA-threonine members, whereas METTL6 modifies the tRNA-serine family. However, decreased m3C32 on tRNA-Ser-GCT isodecoders is only observed with combined METTL2A/2B/6 deletion. Ribo-Seq reveals altered translation of genes related to cell cycle and DNA repair pathways in METTL2A/2B/6-deficient cells, and these mRNAs are enriched in AGU codons that require tRNA-Ser-GCT for translation. These results, supported by reporter assays, help explain the observed altered cell cycle, slowed proliferation, and increased cisplatin sensitivity phenotypes of METTL2A/2B/6-deficient cells. Thus, we define METTL2A/2B/6-dependent methylomes and uncover a particular requirement of m3C32 tRNA modification for serine codon-biased mRNA translation of cell cycle, and DNA repair genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微生物病原体部署效应蛋白来操纵宿主细胞先天免疫,经常使用知之甚少的非常规分泌途径。转移RNA(tRNA)反密码子修饰是普遍的,但已知的生物学功能很少。这里,在稻瘟病真菌稻瘟病中,我们展示了非常规效应子分泌如何依赖于tRNA修饰和密码子使用。我们表征了介导tRNA反密码子摆动尿苷2-硫醇化(s2U34)的米曲霉Uba4-Urm1硫中继系统,有效解码AA结尾同源密码子所需的保守修饰。s2U34的缺失消除了编码非常规分泌的细胞质效应子的AA末端密码子丰富的信使RNA的翻译,但编码内质网-高尔基体分泌的质外生效应子的mRNA未受影响。增加近同源tRNA接受度,或PWL2中的同义AA至AG结尾密码子变化,在Δuba4中修复了细胞质效应物的产生。在UBA4+中,表达重新编码的PWL2引起Pwl2超分泌,使宿主-真菌界面不稳定。因此,U34硫醇化和密码子使用调节宿主水稻细胞中病原体非常规效应物的分泌。
    Microbial pathogens deploy effector proteins to manipulate host cell innate immunity, often using poorly understood unconventional secretion routes. Transfer RNA (tRNA) anticodon modifications are universal, but few biological functions are known. Here, in the rice blast fungus Magnaporthe oryzae, we show how unconventional effector secretion depends on tRNA modification and codon usage. We characterized the M. oryzae Uba4-Urm1 sulfur relay system mediating tRNA anticodon wobble uridine 2-thiolation (s2U34), a conserved modification required for efficient decoding of AA-ending cognate codons. Loss of s2U34 abolished the translation of AA-ending codon-rich messenger RNAs encoding unconventionally secreted cytoplasmic effectors, but mRNAs encoding endoplasmic reticulum-Golgi-secreted apoplastic effectors were unaffected. Increasing near-cognate tRNA acceptance, or synonymous AA- to AG-ending codon changes in PWL2, remediated cytoplasmic effector production in Δuba4. In UBA4+, expressing recoded PWL2 caused Pwl2 super-secretion that destabilized the host-fungus interface. Thus, U34 thiolation and codon usage tune pathogen unconventional effector secretion in host rice cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在遗传密码扩展(GCE)领域,非规范氨基酸(ncAA)掺入效率的提高一直受到关注。通过分析报道的巨型病毒物种的基因序列,我们注意到tRNA结合界面的一些序列差异。根据甘氏甲烷球菌酪氨酸-tRNA合成酶(MjTyrRS)和模仿病毒酪氨酸-tRNA合成酶(MVTyrRS)之间的结构和活性差异,我们发现MjTyrRS的反密码子识别环的大小会影响其对三联体和特定四联体密码子的抑制活性。因此,设计了三个具有环最小化的MjTyrRS突变体。野生型MjTyrRS环最小化突变体的抑制增加了1.8-4.3倍,MjTyrRS变体通过环最小化使ncAA的掺入活性增强15-150%。此外,对于特定的四元组密码子,MjTyrRS的循环最小化也提高了抑制效率。这些结果表明MjTyrRS的环最小化可以为有效合成含ncAA的蛋白质提供一般策略。
    In the field of genetic code expansion (GCE), improvements in the efficiency of noncanonical amino acid (ncAA) incorporation have received continuous attention. By analyzing the reported gene sequences of giant virus species, we noticed some sequence differences at the tRNA binding interface. On the basis of the structural and activity differences between Methanococcus jannaschii Tyrosyl-tRNA Synthetase (MjTyrRS) and mimivirus Tyrosyl-tRNA Synthetase (MVTyrRS), we found that the size of the anticodon-recognized loop of MjTyrRS influences its suppression activity regarding triplet and specific quadruplet codons. Therefore, three MjTyrRS mutants with loop minimization were designed. The suppression of wild-type MjTyrRS loop-minimized mutants increased by 1.8-4.3-fold, and the MjTyrRS variants enhanced the activity of the incorporation of ncAAs by 15-150% through loop minimization. In addition, for specific quadruplet codons, the loop minimization of MjTyrRS also improves the suppression efficiency. These results suggest that loop minimization of MjTyrRS may provide a general strategy for the efficient synthesis of ncAAs-containing proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转移RNA(tRNA)通过充当信使RNA(mRNA)和蛋白质之间的生物学联系而在翻译中起着核心作用。tRNA分子的一个突出特征是其严重修饰的状态,这极大地影响了它的生物发生和功能。反密码子环内的修饰对于翻译效率和准确性至关重要,而身体区域的其他修饰会影响tRNA的结构和稳定性。最近的研究表明,这些不同的修饰是基因表达的关键调节因子。它们参与许多重要的生理和病理过程,包括癌症。在这篇综述中,我们专注于六种不同的tRNA修饰,以描述它们在肿瘤发生和肿瘤进展中的功能和机制。提供对其作为生物标志物和治疗靶标的临床潜力的见解。
    Transfer RNA (tRNA) plays a central role in translation by functioning as a biological link between messenger RNA (mRNA) and proteins. One prominent feature of the tRNA molecule is its heavily modified status, which greatly affects its biogenesis and function. Modifications within the anticodon loop are crucial for translation efficiency and accuracy, whereas other modifications in the body region affect tRNA structure and stability. Recent research has revealed that these diverse modifications are critical regulators of gene expression. They are involved in many important physiological and pathological processes, including cancers. In this review we focus on six different tRNA modifications to delineate their functions and mechanisms in tumorigenesis and tumor progression, providing insights into their clinical potential as biomarkers and therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转移RNA(tRNA)在遗传信息的传递中起着关键作用,tRNAs的异常直接导致翻译障碍并导致疾病,包括癌症.复杂的修饰使tRNA能够执行其微妙的生物学功能。改变适当的修饰可能会影响tRNA的稳定性,削弱了它携带氨基酸的能力,破坏反密码子和密码子的配对.研究证实,tRNA修饰的失调在致癌作用中起着重要作用。此外,当tRNA的稳定性受损时,tRNA被特异性RNA酶切割成小的tRNA片段(tRF)。虽然已经发现tRF在肿瘤发生中起着重要的调节作用,它的形成过程还很不清楚。了解tRNA修饰不当和tRFs在癌症中的异常形成,有助于揭示病理条件下tRNA代谢过程的作用。这可能为癌症的预防和治疗开辟新的途径。
    Transfer RNAs (tRNAs) play pivotal roles in the transmission of genetic information, and abnormality of tRNAs directly leads to translation disorders and causes diseases, including cancer. The complex modifications enable tRNA to execute its delicate biological function. Alteration of appropriate modifications may affect the stability of tRNA, impair its ability to carry amino acids, and disrupt the pairing between anticodons and codons. Studies confirmed that dysregulation of tRNA modifications plays an important role in carcinogenesis. Furthermore, when the stability of tRNA is impaired, tRNAs are cleaved into small tRNA fragments (tRFs) by specific RNases. Though tRFs have been found to play vital regulatory roles in tumorigenesis, its formation process is far from clear. Understanding improper tRNA modifications and abnormal formation of tRFs in cancer is conducive to uncovering the role of metabolic process of tRNA under pathological conditions, which may open up new avenues for cancer prevention and treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一种改进的转移熵方法,称为基于分子动力学集合(dfcfGNMMD)的力常数拟合高斯网络模型的动态版本,以探索人线粒体苯丙氨酰-tRNA合成酶(hmPheRS)的变构机制,在遗传密码翻译中起关键作用的氨酰tRNA合成酶之一。dfcfGNMMD方法可以提供转移熵的可靠估计,并对反密码子结合域在氨基酰化活性中驱动催化域的作用以及tRNA结合和残基突变对酶活性的影响提供新的见解。揭示hmPheRS变构交流的因果机制。此外,我们结合了残基动态和共同进化信息,以进一步研究hmPheRS变构中的关键残基。本研究揭示了hmPheRS变构的机制,可为相关药物设计提供重要信息。
    We propose an improved transfer entropy approach called the dynamic version of the force constant fitted Gaussian network model based on molecular dynamics ensemble (dfcfGNMMD) to explore the allosteric mechanism of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS), one of the aminoacyl-tRNA synthetases that play a crucial role in translation of the genetic code. The dfcfGNMMD method can provide reliable estimates of the transfer entropy and give new insights into the role of the anticodon binding domain in driving the catalytic domain in aminoacylation activity and into the effects of tRNA binding and residue mutation on the enzyme activity, revealing the causal mechanism of the allosteric communication in hmPheRS. In addition, we incorporate the residue dynamic and co-evolutionary information to further investigate the key residues in hmPheRS allostery. This study sheds light on the mechanisms of hmPheRS allostery and can provide important information for related drug design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已知两种类型的甘氨酰-tRNA合成酶(GlyRS),α2和α2β2GlyRSs。两种类型的合成酶都使用II类催化结构域来氨基酰化tRNAGly。在质体和一些细菌中,将α和β亚基融合并命名为(αβ)2GlyRS。虽然tRNA识别和氨基酰化机制对于α2GlyRSs是很好理解的,关于α2β2/(αβ)2GlyRSs的机制知之甚少。在这里,我们描述了来自水稻叶绿体的(αβ)2GlyRS本身以及与同源tRNAGly复合的结构。该组结构揭示了合成酶的U形β一半以两步方式选择tRNA。第一步,合成酶接合tRNA的肘部和反密码子碱基C35。第二步,tRNA向催化中心旋转了约9°。该合成酶在tRNA中探测反密码子碱基C36和鉴别碱基C73的存在。这种复杂的机制使tRNA能够从与大多数其他II类合成酶相反的方向进入合成酶的活性位点。
    Two types of glycyl-tRNA synthetase (GlyRS) are known, the α2 and the α2β2 GlyRSs. Both types of synthetase employ a class II catalytic domain to aminoacylate tRNAGly. In plastids and some bacteria, the α and β subunits are fused and are designated as (αβ)2 GlyRSs. While the tRNA recognition and aminoacylation mechanisms are well understood for α2 GlyRSs, little is known about the mechanisms for α2β2/(αβ)2 GlyRSs. Here we describe structures of the (αβ)2 GlyRS from Oryza sativa chloroplast by itself and in complex with cognate tRNAGly. The set of structures reveals that the U-shaped β half of the synthetase selects the tRNA in a two-step manner. In the first step, the synthetase engages the elbow and the anticodon base C35 of the tRNA. In the second step, the tRNA has rotated ∼9° toward the catalytic centre. The synthetase probes the tRNA for the presence of anticodon base C36 and discriminator base C73. This intricate mechanism enables the tRNA to access the active site of the synthetase from a direction opposite to that of most other class II synthetases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:棘头是专性体内寄生虫的进化枝,其线粒体基因组(有丝分裂基因组)和进化仍然相对知之甚少。以前的研究报告说,atp8缺乏从棘头有丝分裂基因组,并且tRNA基因通常具有非标准结构。Heterosentispseudobagri(Arhthrmacanthidae)是一种棘头鱼内寄生虫,目前尚无分子数据,和生物学信息在英语中不可用。此外,目前尚无有丝分裂基因组可用于食齿科。
    方法:我们对其有丝分裂基因组和转录组进行了测序,并对几乎所有可用的棘头有丝分裂基因组进行了比较有丝分裂基因组分析。
    结果:有丝分裂基因组具有在数据集中的相同链上和独特基因顺序上编码的所有基因。在12个蛋白质编码基因中,几个基因高度分歧,难以注释。此外,几个tRNA基因不能自动识别,所以我们必须通过与直系同源物的详细比较来手动识别它们。就像棘头动物一样,一些tRNA缺乏TWC臂或DHU臂,但是在一些情况下,我们仅在包含反密码子的保守的狭窄中央区段的基础上注释了tRNA基因,而侧翼5'和3'末端与直系同源物没有任何相似之处,并且它们不能折叠成tRNA二级结构。我们证实,这些不是通过从转录组数据组装有丝分裂基因组来测序人工制品。尽管在以前的研究中没有观察到这种现象,我们的比较分析显示,在多个棘头菌谱系中存在高度不同的tRNA。
    结论:这些发现表明,多个tRNA基因是无功能的,或者(某些)棘头菌中的(某些)tRNA基因可能会经历广泛的转录后tRNA加工,从而将其恢复为更常规的结构。有必要对尚未表示的谱系中的有丝分裂基因组进行测序,并进一步探索Acanthocephala中tRNA进化的异常模式。
    BACKGROUND: Acanthocephala is a clade of obligate endoparasites whose mitochondrial genomes (mitogenomes) and evolution remain relatively poorly understood. Previous studies reported that atp8 is lacking from acanthocephalan mitogenomes, and that tRNA genes often have nonstandard structures. Heterosentis pseudobagri (Arhythmacanthidae) is an acanthocephalan fish endoparasite for which no molecular data are currently available, and biological information is unavailable in the English language. Furthermore, there are currently no mitogenomes available for Arhythmacanthidae.
    METHODS: We sequenced its mitogenome and transcriptome, and conducted comparative mitogenomic analyses with almost all available acanthocephalan mitogenomes.
    RESULTS: The mitogenome had all genes encoded on the same strand and unique gene order in the dataset. Among the 12 protein-coding genes, several genes were highly divergent and annotated with difficulty. Moreover, several tRNA genes could not be identified automatically, so we had to identify them manually via a detailed comparison with orthologues. As common in acanthocephalans, some tRNAs lacked either the TWC arm or the DHU arm, but in several cases, we annotated tRNA genes only on the basis of the conserved narrow central segment comprising the anticodon, while the flanking 5\' and 3\' ends did not exhibit any resemblance to orthologues and they could not be folded into a tRNA secondary structure. We corroborated that these are not sequencing artefacts by assembling the mitogenome from transcriptomic data. Although this phenomenon was not observed in previous studies, our comparative analyses revealed the existence of highly divergent tRNAs in multiple acanthocephalan lineages.
    CONCLUSIONS: These findings indicate either that multiple tRNA genes are non-functional or that (some) tRNA genes in (some) acanthocephalans might undergo extensive posttranscriptional tRNA processing which restores them to more conventional structures. It is necessary to sequence mitogenomes from yet unrepresented lineages and further explore the unusual patterns of tRNA evolution in Acanthocephala.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通用N6-苏酰基氨基甲酰基腺苷(t6A)修饰发生在tRNA的37位,其破译从腺苷开始的密码子。机械上,T6A稳定反密码子茎环的结构构型,促进反密码子-密码子配对并保护翻译保真度。tRNAt6A的生物合成由TsaC/Sua5(COG0009)和TsaD/Kae1/Qri7(COG0533)的两个普遍保守的蛋白质家族共催化。酶,TsaC/Sua5蛋白利用L-苏氨酸的底物,HCO3-/CO2和ATP合成中间体L-苏酰基氨基甲酰基腺苷酸,其中的苏酰基氨基甲酰基部分随后通过细菌中的TsaD-TsaB-TsaE复合物或古细菌和真核细胞质中的KEOPS复合物转移到底物tRNA的A37上,而Qri7/OSGEPL1蛋白在线粒体中独立发挥作用。tRNAt6A的耗尽会干扰蛋白质的稳态,并严重影响单细胞生物的生命和高等真核生物的适应性。YRDC的致病突变,OSGEPL1和KEOPS与许多人类线粒体和神经系统疾病有关,包括常染色体隐性遗传Galloway-Mowat综合征。目前尚未很好地阐明强调tRNAt6A的生物合成和细胞作用的分子机制。这篇综述总结了目前对催化的机理理解,三个生命王国的tRNAt6A生物合成机制的调节和疾病意义,特别侧重于从保护和多样性的角度描述结构-功能关系。
    The universal N6-threonylcarbamoyladenosine (t6A) modification occurs at position 37 of tRNAs that decipher codons starting with adenosine. Mechanistically, t6A stabilizes structural configurations of the anticodon stem loop, promotes anticodon-codon pairing and safeguards the translational fidelity. The biosynthesis of tRNA t6A is co-catalyzed by two universally conserved protein families of TsaC/Sua5 (COG0009) and TsaD/Kae1/Qri7 (COG0533). Enzymatically, TsaC/Sua5 protein utilizes the substrates of L-threonine, HCO3-/CO2 and ATP to synthesize an intermediate L-threonylcarbamoyladenylate, of which the threonylcarbamoyl-moiety is subsequently transferred onto the A37 of substrate tRNAs by the TsaD-TsaB -TsaE complex in bacteria or by the KEOPS complex in archaea and eukaryotic cytoplasm, whereas Qri7/OSGEPL1 protein functions on its own in mitochondria. Depletion of tRNA t6A interferes with protein homeostasis and gravely affects the life of unicellular organisms and the fitness of higher eukaryotes. Pathogenic mutations of YRDC, OSGEPL1 and KEOPS are implicated in a number of human mitochondrial and neurological diseases, including autosomal recessive Galloway-Mowat syndrome. The molecular mechanisms underscoring both the biosynthesis and cellular roles of tRNA t6A are presently not well elucidated. This review summarizes current mechanistic understandings of the catalysis, regulation and disease implications of tRNA t6A-biosynthetic machineries of three kingdoms of life, with a special focus on delineating the structure-function relationship from perspectives of conservation and diversity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管tRNA在翻译过程中的功能已得到很好的证实,在哺乳动物中,tRNA丰度是否与翻译效率(TE)密切相关仍存在争议。此外,tRNA的表达对哺乳动物中组织特异性蛋白质组的建立有多重要的贡献尚未得到很好的解决。这里,我们在大脑中使用去甲基酶-tRNA测序(DM-tRNA-seq)和使用核糖体标记测序(RiboTag-seq)测量mRNAs的TEs,心,和小鼠的睾丸。在不同组织中观察到tRNA等解码器表达的显着变化。当通过排列反密码子来考虑等解码器分组对减少变异的统计影响时,我们观察到所有样本的反密码子表达变异的预期减少,一个意想不到的小变异的反密码子使用偏差,和氨基酸水平的tRNA同种型表达的意外较大变化。不管它们是否共享相同的反密码子,编码相同氨基酸的等解码器在不同组织中共表达。基于tRNA的表达和mRNA的TEs,我们发现tRNA适应指数(tAI)值和TEs在同一组织中显著相关,而在组织间不显著;tRNA表达和翻译肽的氨基酸组成在同一组织中呈正相关,而在组织间不显著。因此,我们假设tRNA的组织特异性表达可能是由于转录后机制。这项研究为tRNA和翻译研究提供了资源,这些结果也为tRNA的动力学及其在翻译调控中的作用提供了新的见解。
    Although the function of tRNAs in the translational process is well established, it remains controversial whether tRNA abundance is tightly associated with translational efficiency (TE) in mammals. Moreover, how critically the expression of tRNAs contributes to the establishment of tissue-specific proteomes in mammals has not been well addressed. Here, we measured both tRNA expression using demethylase-tRNA sequencing (DM-tRNA-seq) and TE of mRNAs using ribosome-tagging sequencing (RiboTag-seq) in the brain, heart, and testis of mice. Remarkable variation in the expression of tRNA isodecoders was observed among different tissues. When the statistical effect of isodecoder-grouping on reducing variations is considered through permutating the anticodons, we observed an expected reduction in the variation of anticodon expression across all samples, an unexpected smaller variation of anticodon usage bias, and an unexpected larger variation of tRNA isotype expression at amino acid level. Regardless of whether or not they share the same anticodons, the isodecoders encoding the same amino acids are co-expressed across different tissues. Based on the expression of tRNAs and the TE of mRNAs, we find that the tRNA adaptation index (tAI) and TE are significantly correlated in the same tissues but not between tissues; and tRNA expression and the amino acid composition of translating peptides are positively correlated in the same tissues but not between tissues. We therefore hypothesize that the tissue-specific expression of tRNAs might be due to post-transcriptional mechanisms. This study provides a resource for tRNA and translation studies, as well as novel insights into the dynamics of tRNAs and their roles in translational regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号