variant of uncertain significance

不确定意义的变体
  • 文章类型: Journal Article
    PALB2 has been identified as a breast and pancreatic cancer susceptibility gene. Utilizing a targeted sequencing approach, we discovered two novel germline missense PALB2 variants c.191C>T and c.311C>T, encoding p.Ser64Leu and p.Pro104Leu, respectively, in individuals in a pancreatic cancer registry. No missense PALB2 variants from familial pancreatic cancer patients, and few PALB2 variants overall, have been functionally characterized. Given the known role of PALB2, we tested the impact of p.Ser64Leu and p.Pro104Leu variants on DNA damage responses. Neither p.Ser64Leu nor p.Pro104Leu have clear effects on interactions with BRCA1 and KEAP1, which are mediated by adjacent motifs in PALB2. However, both variants are associated with defective recruitment of PALB2, and the RAD51 recombinase downstream, to DNA damage foci. Furthermore, p.Ser64Leu and p.Pro104Leu both largely compromise DNA double-strand break-initiated homologous recombination, and confer increased cellular sensitivity to ionizing radiation (IR) and the poly (ADP-ribose) polymerase (PARP) inhibitor Olaparib. Taken together, our results represent the first demonstration of functionally deleterious PALB2 missense variants associated with familial pancreatic cancer and of deleterious variants in the N-terminus outside of the coiled-coil domain. Furthermore, our results suggest the possibility of personalized treatments, using IR or PARP inhibitor, of pancreatic and other cancers that carry a deleterious PALB2 variant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Since BRCA mutations are only responsible for 10-20% of cases of breast cancer in patients with early-onset or a family history and since next-generation sequencing technology allows the simultaneous sequencing of a large number of target genes, testing for multiple cancer-predisposing genes is now being considered, but its significance in clinical practice remains unclear. We then developed a sequencing panel containing 68 genes that had cancer risk association for patients with early-onset or familial breast cancer. A total of 133 patients were enrolled and 30 (22.6%) were found to carry germline deleterious mutations, 9 in BRCA1, 11 in BRCA2, 2 in RAD50, 2 in TP53 and one each in ATM, BRIP1, FANCI, MSH2, MUTYH, and RAD51C. Triple-negative breast cancer (TNBC) was associated with the highest mutation rate (45.5%, p = 0.025). Seven of the 9 BRCA1 mutations and the single FANCI mutation were in the TNBC group; 9 of the 11 BRCA2, 1 of the 2 RAD50 as well as BRIP1, MSH2, MUTYH, and RAD51C mutations were in the hormone receptor (HR)(+)Her2(-) group, and the other RAD50, ATM, and TP53 mutations were in the HR(+)Her2(+) group. Mutation carriers were considered as high-risk to develop malignancy and advised to receive cancer screening. Screening protocols of non-BRCA genes were based on their biologic functions; for example, patients carrying RAD51C mutation received a screening protocol similar to that for BRCA, since BRCA and RAD51C are both involved in homologous recombination. In conclusion, we consider that multiple gene sequencing in cancer risk assessment is clinically valuable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号