protein transport

蛋白质转运
  • 文章类型: Journal Article
    米色脂肪活化涉及慢性冷适应后燃料转换为脂肪酸氧化。线粒体酰基辅酶A合成酶长链家族成员1(ACSL1)位于线粒体中,在脂肪酸氧化中起关键作用;然而,亚细胞定位的调节机制仍然知之甚少。这里,我们鉴定了脂肪组织中的内体运输成分sortilin(由Sort1编码),该成分在米色脂肪激活过程中显示出动态表达,并促进ACSL1从线粒体易位至内溶酶体途径进行降解.脂肪细胞中sortilin的消耗导致线粒体ACSL1的增加和AMPK/PGC1α信号的激活,从而激活米色脂肪并防止高脂饮食(HFD)诱导的肥胖和胰岛素抵抗。总的来说,我们的发现表明,sortilin在米色脂肪激活过程中通过底物燃料选择控制脂肪组织脂肪酸氧化,并为治疗代谢性疾病提供了潜在的靶向方法。
    Beige fat activation involves a fuel switch to fatty acid oxidation following chronic cold adaptation. Mitochondrial acyl-CoA synthetase long-chain family member 1 (ACSL1) localizes in the mitochondria and plays a key role in fatty acid oxidation; however, the regulatory mechanism of the subcellular localization remains poorly understood. Here, we identify an endosomal trafficking component sortilin (encoded by Sort1) in adipose tissues that shows dynamic expression during beige fat activation and facilitates the translocation of ACSL1 from the mitochondria to the endolysosomal pathway for degradation. Depletion of sortilin in adipocytes results in an increase of mitochondrial ACSL1 and the activation of AMPK/PGC1α signaling, thereby activating beige fat and preventing high-fat diet (HFD)-induced obesity and insulin resistance. Collectively, our findings indicate that sortilin controls adipose tissue fatty acid oxidation by substrate fuel selection during beige fat activation and provides a potential targeted approach for the treatment of metabolic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大多数细菌会利用它们的毒素与宿主细胞相互作用,对细胞造成损害,然后从细胞中逃脱。当细菌进入细胞时,它们将通过内体途径运输。RabGTP酶作为结合其下游效应蛋白的内体的主要组分参与细菌转运。细菌操纵一些RabGTPases,逃离牢房,并获得生存。在这次审查中,我们将重点总结细菌如何操纵RabGTPases以控制其逃逸的许多过程。
    Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    NLRP3炎性体激活,细胞因子分泌和焦亡对不同刺激的反应至关重要,与各种疾病密切相关。在刺激时,NLRP3经历亚细胞膜运输和构象重排,在微管组织中心(MTOC)为炎症小体组装做准备。这里,我们使用人类和鼠细胞阐明了这些有序过程的协调机制。具体来说,NLRP3通过棕榈酰转移酶zDHHC1在两个位点进行棕榈酰化,促进其在亚细胞膜之间的运输,包括线粒体,跨高尔基网络(TGN),和内体。这种动态贩运最终导致NLRP3本地化为MTOC,其中LATS1/2,在启动期间预先招募到MTOC,磷酸化NLRP3以进一步促进其与NIMA相关激酶7(NEK7)的相互作用,最终导致NLRP3完全激活。始终如一,Zdhhc1缺乏减轻了LPS诱导的炎症,并在小鼠中提供了针对死亡的保护。总之,我们的发现为NLRP3膜运输和炎症体激活的调节提供了有价值的见解,由棕榈酰化和磷酸化事件控制。
    NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表皮生长因子受体(EGFR)是一种跨膜酪氨酸激酶受体,是ErbB受体家族的成员。作为一个重要的癌症司机,EGFR在多种恶性肿瘤中发生基因扩增或过表达等突变,与肿瘤发生密切相关。这篇综述研究了几种常见癌症中EGFR的异常表达,并总结了针对该受体开发的当前治疗策略。此外,这篇综述比较了EGFR激活的差异,内化,内吞作用,在正常细胞和癌细胞中进行分类,并强调了影响其贩运过程的一些监管因素。请检查并确认在标题中进行的编辑。是的,更正按照期刊说明结构化摘要是强制性的,请提供摘要格式不适用于审阅文章。
    Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor and a member of the ErbB receptor family. As a significant cancer driver, EGFR undergoes mutations such as gene amplification or overexpression in a wide range of malignant tumors and is closely associated with tumorigenesis. This review examines the aberrant expression of EGFR in several common cancers and summarizes the current therapeutic strategies developed for this receptor. Additionally, this review compares the differences in EGFR activation, internalization, endocytosis, and sorting in normal and cancer cells, and highlights some regulatory factors that influence its trafficking process.Kindly check and confirm the edit made in the title.Yes, correctAs per journal instructions structured abstract is mandatory kindly provideThe abstract format does not apply to Review articles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纤毛搏动和步内运输取决于动力蛋白和驱动蛋白马达。kinesin-9家族成员Kif6和Kif9与原生生物和哺乳动物的活动纤毛有关。它们是如何运作的,以及它们是否冗余地行动,然而,仍然不清楚。这里,我们表明Kif6和Kif9在哺乳动物中发挥不同的作用。Kif6形成沿着轴突双向移动的标点符号,而Kif9似乎在睫状中央装置上区域振荡。始终如一,只有Kif6在体外显示基于微管的运动活动,并且它的纤毛定位需要它的ATP酶活性。小鼠的Kif6缺乏破坏室管膜组织中协调的纤毛搏动并损害脑脊液流动,导致严重的脑积水和高死亡率。Kif9缺乏会导致轻度脑积水,而不会明显影响纤毛搏动或寿命。Kif6-/-和Kif9-/-男性不育,但表现出少精子症,精子运动能力差,精子向前运动有缺陷,分别。这些结果表明,Kif6作为货物运输的马达,Kif9作为中央设备调节器。
    Ciliary beat and intraflagellar transport depend on dynein and kinesin motors. The kinesin-9 family members Kif6 and Kif9 are implicated in motile cilia motilities across protists and mammals. How they function and whether they act redundantly, however, remain unclear. Here, we show that Kif6 and Kif9 play distinct roles in mammals. Kif6 forms puncta that move bidirectionally along axonemes, whereas Kif9 appears to oscillate regionally on the ciliary central apparatus. Consistently, only Kif6 displays microtubule-based motor activity in vitro, and its ciliary localization requires its ATPase activity. Kif6 deficiency in mice disrupts coordinated ciliary beat across ependymal tissues and impairs cerebrospinal fluid flow, resulting in severe hydrocephalus and high mortality. Kif9 deficiency causes mild hydrocephalus without obviously affecting the ciliary beat or the lifespan. Kif6-/- and Kif9-/- males are infertile but exhibit oligozoospermia with poor sperm motility and defective forward motion of sperms, respectively. These results suggest Kif6 as a motor for cargo transport and Kif9 as a central apparatus regulator.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物的内膜系统由相互连接的膜细胞器组成,这些细胞器有助于细胞内的结构和功能。这些细胞器包括内质网(ER),高尔基体,液泡,跨高尔基网络,和前液泡室或多泡体。通过囊泡介导的转运,分泌的蛋白质在ER中合成,随后沿着分泌途径转运至液泡或细胞外,以实现特定功能。遗传筛选是研究植物蛋白分泌的重要方法。它需要识别基因突变导致的表型差异,如甲磺酸乙酯,T-DNA插入,RNAi,研究基因功能并发现具有特定性状或基因功能的突变体。通过遗传筛选对植物蛋白分泌的研究取得了重大进展。在这个协议中,我们提供了使用基因筛选方法研究蛋白质分泌途径的分步指南.我们使用拟南芥的游离1抑制剂和Marchantiapolymorpha的油体突变体的例子。此外,我们对基因筛选进行了概述,并简要总结了蛋白质分泌研究领域的新兴技术。
    The endomembrane system in plants is composed of interconnected membrane organelles that contribute to intracellular structure and function. These organelles include the endoplasmic reticulum (ER), Golgi apparatus, vacuole, trans-Golgi network, and prevacuolar compartment or multivesicular body. Through vesicle-mediated transport, secreted proteins are synthesized in the ER and subsequently transported along the secretory pathway to the vacuole or outside of cells to fulfill specialized functions. Genetic screening is a crucial method for studying plant protein secretion. It entails identifying phenotypic differences resulting from genetic mutations, such as ethyl methanesulfonate, T-DNA insertion, and RNAi, to investigate gene function and discover mutants with specific traits or gene functions. Significant progress has been achieved in the study of plant protein secretion through genetic screening. In this protocol, we provide a step-by-step guide to studying the protein secretion pathway using a genetic screen approach. We use the example of the free 1 suppressor of Arabidopsis thaliana and oil body mutants of Marchantia polymorpha. Additionally, we offer an overview of genetic screening and briefly summarize the emerging technologies in the field of protein secretion research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    囊泡运输是真核生物中保守的重要细胞过程,可将蛋白质精确地运输到目的地。植物内膜系统在协调这种囊泡介导的蛋白质转运过程中起着关键作用。使其研究对于全面了解植物的生长发育至关重要。药物分析被证明对研究植物内膜系统非常有用。为了促进这方面的进一步研究,我们在本章中总结了几种常用的化学抑制剂,为对植物内膜系统感兴趣的研究人员提供实用资源。
    Vesicle trafficking is an essential cellular process conserved in eukaryotes to precisely transport proteins to their destinations. The plant endomembrane system plays a pivotal role in orchestrating this vesicle-mediated protein transport process, making its study essential for a comprehensive understanding of plant growth and development. Pharmaceutical analysis proves highly useful in investigating the plant endomembrane system. To facilitate further studies in this area, we present a summary of several commonly used chemical inhibitors in this chapter, providing a practical resource for researchers interested in the plant endomembrane system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质的亚细胞定位和动态行为的延时成像对于了解其在细胞中的生物学功能至关重要。随着各种方法和计算工具的出现,蛋白质时空动力学的精确跟踪和定量已经变得可行。Kymograph分析,特别是,已被广泛用于蛋白质的定量评估,囊泡,和细胞器运动。然而,常规测绘仪分析,它基于单一的线性轨迹,可能无法全面捕获在细胞内运输和活动过程中改变其过程的蛋白质的复杂性。在这一章中,我们引入了一种用于全细胞kymograph分析的高级方案,该方案允许对蛋白质动力学进行三维(3D)跟踪.通过采用先进的全细胞和经典的测花机方法,通过分析生长中的烟草花粉管中尖端集中的内吞和胞吐过程来验证该方法。此外,我们通过整合伪彩色kymograps来增强这种方法,使光漂白后的荧光恢复与蛋白质荧光强度的变化直接可视化,以提高我们对蛋白质定位和动力学的理解。这种全面的方法为细胞环境中蛋白质活性的复杂动态提供了新的见解。
    Time-lapse imaging of the subcellular localization and dynamic behavior of proteins is critical to understand their biological functions in cells. With the advent of various methodologies and computational tools, the precise tracking and quantification of protein spatiotemporal dynamics have become feasible. Kymograph analysis, in particular, has been extensively adopted for the quantitative assessment of proteins, vesicles, and organelle movements. However, conventional kymograph analysis, which is based on a single linear trajectory, may not comprehensively capture the complexity of proteins that alter their course during intracellular transport and activity. In this chapter, we introduced an advanced protocol for whole-cell kymograph analysis that allows for three-dimensional (3D) tracking of protein dynamics. This method was validated through the analysis of tip-focused endocytosis and exocytosis processes in growing tobacco pollen tubes by employing both the advanced whole-cell and classical kymograph methods. In addition, we enhanced this method by integrating pseudo-colored kymographs that enables the direct visualization of changes in protein fluorescence intensity with fluorescence recovery after photobleaching to advance our understanding of protein localization and dynamics. This comprehensive method offers a novel insight into the intricate dynamics of protein activity within the cellular context.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在内膜系统中,多囊泡体(MVB)在将泛素化膜蛋白分选到腔内囊泡中以在与液泡或溶酶体融合时降解中起关键作用。这个过程涉及多蛋白复合物的调节,包括转运(ESCRT)I-III所需的内体分选复合物,和辅助蛋白。尽管在植物细胞中已经鉴定出许多细胞器蛋白质组,与参与MVB生物发生的调节因子相关的特定蛋白质组的信息仍然有限.这里,以ESCRT组件FREE1为例,我们描述了一种通过使用基于TurboID的邻近标记方法来鉴定内体调节子的邻近蛋白的方法。
    In the endomembrane system, multivesicular bodies (MVBs) play a crucial role in sorting ubiquitinated membrane proteins into intraluminal vesicles for degradation upon fusion with vacuoles or lysosomes. This process involves regulations by multiprotein complexes, including endosomal sorting complex required for transport (ESCRT) I-III, and accessory proteins. Although many organellar proteomes have been identified in plant cells, the information of specific proteomes associated with regulators engaged in MVB biogenesis remains limited. Here, using the ESCRT component FREE1 as an example, we describe a method to identify neighboring proteins of endosomal regulators by using an approach of TurboID-based proximity labeling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号