protein transport

蛋白质转运
  • 文章类型: Journal Article
    米色脂肪活化涉及慢性冷适应后燃料转换为脂肪酸氧化。线粒体酰基辅酶A合成酶长链家族成员1(ACSL1)位于线粒体中,在脂肪酸氧化中起关键作用;然而,亚细胞定位的调节机制仍然知之甚少。这里,我们鉴定了脂肪组织中的内体运输成分sortilin(由Sort1编码),该成分在米色脂肪激活过程中显示出动态表达,并促进ACSL1从线粒体易位至内溶酶体途径进行降解.脂肪细胞中sortilin的消耗导致线粒体ACSL1的增加和AMPK/PGC1α信号的激活,从而激活米色脂肪并防止高脂饮食(HFD)诱导的肥胖和胰岛素抵抗。总的来说,我们的发现表明,sortilin在米色脂肪激活过程中通过底物燃料选择控制脂肪组织脂肪酸氧化,并为治疗代谢性疾病提供了潜在的靶向方法。
    Beige fat activation involves a fuel switch to fatty acid oxidation following chronic cold adaptation. Mitochondrial acyl-CoA synthetase long-chain family member 1 (ACSL1) localizes in the mitochondria and plays a key role in fatty acid oxidation; however, the regulatory mechanism of the subcellular localization remains poorly understood. Here, we identify an endosomal trafficking component sortilin (encoded by Sort1) in adipose tissues that shows dynamic expression during beige fat activation and facilitates the translocation of ACSL1 from the mitochondria to the endolysosomal pathway for degradation. Depletion of sortilin in adipocytes results in an increase of mitochondrial ACSL1 and the activation of AMPK/PGC1α signaling, thereby activating beige fat and preventing high-fat diet (HFD)-induced obesity and insulin resistance. Collectively, our findings indicate that sortilin controls adipose tissue fatty acid oxidation by substrate fuel selection during beige fat activation and provides a potential targeted approach for the treatment of metabolic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    粘附受体血管内皮(VE)-钙黏着蛋白转导一系列信号,这些信号调节关键的淋巴细胞行为,包括通透性和细胞骨架重塑。因此,VE-钙粘蛋白必须与多种细胞内蛋白质相互作用以发挥这些功能。然而,内皮细胞中VE-cadherin的完整蛋白质相互作用组仍然是一个谜。这里,我们使用邻近蛋白质组学来阐明VE-钙粘蛋白相互作用组在连接重组过程中如何从非连续连接到连续连接变化,由淋巴管生成因子肾上腺髓质素触发.这些分析确定了揭示ADP核糖基化因子6(ARF6)和外囊复合物在VE-钙粘蛋白贩运和再循环中的作用的相互作用因子。我们还确定了VE-钙粘蛋白在体外和体内控制reelin-一种淋巴管分泌糖蛋白的分泌中的必要作用,最近在控制心脏发育和损伤修复中发挥了重要作用。这种VE-钙黏着蛋白相互作用组揭示了控制粘附连接重塑和淋巴内皮细胞分泌的机制。
    The adhesion receptor vascular endothelial (VE)-cadherin transduces an array of signals that modulate crucial lymphatic cell behaviors including permeability and cytoskeletal remodeling. Consequently, VE-cadherin must interact with a multitude of intracellular proteins to exert these functions. Yet, the full protein interactome of VE-cadherin in endothelial cells remains a mystery. Here, we use proximity proteomics to illuminate how the VE-cadherin interactome changes during junctional reorganization from dis-continuous to continuous junctions, triggered by the lymphangiogenic factor adrenomedullin. These analyses identified interactors that reveal roles for ADP ribosylation factor 6 (ARF6) and the exocyst complex in VE-cadherin trafficking and recycling. We also identify a requisite role for VE-cadherin in the in vitro and in vivo control of secretion of reelin-a lymphangiocrine glycoprotein with recently appreciated roles in governing heart development and injury repair. This VE-cadherin protein interactome shines light on mechanisms that control adherens junction remodeling and secretion from lymphatic endothelial cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真核纤毛和鞭毛对细胞运动和感觉功能至关重要。它们的生物发生和维持依赖于步内运输(IFT)。已经确定了几个货物适配器来帮助IFT货物运输,但是纤毛货物如何从IFT中排出仍然未知。在我们探索布氏锥虫中的小GTP酶ARL13和ARL3的过程中,我们发现ODA16,一种已知的IFT货物适配器,只存在于活动纤毛中,是ARL3的特异性效应物。在纤毛里,活性ARL3GTP酶结合ODA16并从IFT复合物中解离ODA16。ARL3GTPases的耗尽稳定了ODA16与IFT的相互作用,导致纤毛中ODA16的积累和轴突组装的缺陷。人ODA16同源物HsDAW1和ARLGTPases之间的相互作用是保守的,这些相互作用在HsDAW1疾病变体中发生了改变。这些发现揭示了ARLGTP酶在活动纤毛成分的IFT运输中的保守功能,和从IFT卸货的机构。
    Eukaryotic cilia and flagella are essential for cell motility and sensory functions. Their biogenesis and maintenance rely on the intraflagellar transport (IFT). Several cargo adapters have been identified to aid IFT cargo transport, but how ciliary cargos are discharged from the IFT remains largely unknown. During our explorations of small GTPases ARL13 and ARL3 in Trypanosoma brucei, we found that ODA16, a known IFT cargo adapter present exclusively in motile cilia, is a specific effector of ARL3. In the cilia, active ARL3 GTPases bind to ODA16 and dissociate ODA16 from the IFT complex. Depletion of ARL3 GTPases stabilizes ODA16 interaction with the IFT, leading to ODA16 accumulation in cilia and defects in axonemal assembly. The interactions between human ODA16 homolog HsDAW1 and ARL GTPases are conserved, and these interactions are altered in HsDAW1 disease variants. These findings revealed a conserved function of ARL GTPases in IFT transport of motile ciliary components, and a mechanism of cargo unloading from the IFT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    截短的SORL1遗传变异体,编码核内体再循环受体SORLA,已被认为是阿尔茨海默病(AD)的病因。然而,在SORL1中观察到的大多数遗传变异是错义变异,确定致病性水平很复杂,因为携带者来自家系太小,无法提供外显率估计的信息。这里,我们描述了三个不相关的家族,其中SORL1编码错义变体rs772677709导致p.Y1816C替换,与阿尔茨海默病分离。Further,我们研究了SORLAp.Y1816C对受体成熟的影响,细胞定位,以及基于细胞的检测中的贩运。在生理情况下,SORLA在内体内二聚化,允许逆转录依赖从内体到细胞表面的运输,其中管腔部分脱落到细胞外空间(sSORLA)。我们的结果表明,p.Y1816C突变体损害内体中的SORLA同二聚体化,导致减少向细胞表面的运输和减少sSORLA脱落。突变受体的这些运输缺陷可以通过SORLA3Fn-小受体的表达来挽救。最后,我们发现具有工程p.Y1816C突变的iPSC衍生的神经元具有扩大的内体,AD的明确细胞病理学。我们的研究提供了遗传和功能证据,证明SORL1p.Y1816C变体是AD的病因。该突变的部分外显率表明,在多重早发性AD家族的临床遗传筛查中应考虑该突变。
    Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer\'s disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer\'s disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数细菌会利用它们的毒素与宿主细胞相互作用,对细胞造成损害,然后从细胞中逃脱。当细菌进入细胞时,它们将通过内体途径运输。RabGTP酶作为结合其下游效应蛋白的内体的主要组分参与细菌转运。细菌操纵一些RabGTPases,逃离牢房,并获得生存。在这次审查中,我们将重点总结细菌如何操纵RabGTPases以控制其逃逸的许多过程。
    Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肉毒杆菌神经毒素A(BoNT/A)是一种对神经元具有特异性的高效蛋白水解毒素,具有许多临床和美容用途。在突触摄取后,该蛋白被认为通过自身形成的通道从突触小泡易位到细胞质。令人惊讶的是,我们发现,在中毒后,荧光报告基因的蛋白水解首先发生在神经元体细胞中,然后在神经突中离心。为了研究起作用的分子机制,我们在基因工程神经元中使用全基因组siRNA筛选,并鉴定了三百多个基因。细胞器特异性分裂mNG互补表明BoNT/A以逆转录依赖的方式从突触到体细胞定位的高尔基体。然后毒素移动到ER并且似乎需要Sec61复合物用于向后转位到细胞溶胶。我们的研究确定了被毒素劫持的基因和贩运过程,揭示了介导BoNT/A细胞毒性的新途径。
    Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肠细胞和肝细胞履行重要的代谢和屏障功能,并负责关键的矢量分泌和吸收过程。迄今为止,影响肠道和肝脏中代谢酶或跨膜转运蛋白的遗传疾病比影响细胞内运输的突变更好地理解。在这次审查中,我们探讨了关于细胞内运输缺陷及其在肠道和肝脏中的临床表现的新兴知识。我们提供了详细的概述,包括更多调查的疾病,如规范,微绒毛包涵体病的变体和相关形式,以及最近描述的病理学,强调了几种贩运途径的复杂性和疾病相关性。我们举例说明细胞内贩运中心,如根尖再循环内体系统,跨高尔基网络,溶酶体,或高尔基体到内质网的转运参与了病理机制并导致疾病。最终,了解这些过程可以激发新的治疗方法,这将大大提高受影响患者的生活质量。
    Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    液泡蛋白分选35(VPS35)在逆转录复合物中至关重要,控制细胞内的跨膜蛋白运输,它的功能障碍与神经退行性疾病有关。一种错觉突变,Asp620Asn(D620N),特别与家族性迟发性帕金森氏症有关,虽然在阿尔茨海默氏症中观察到VPS35水平降低,肌萎缩侧索硬化(ALS),额颞叶痴呆(FTD),和tau蛋白病。VPS35在某些神经元发育过程中的缺失可以引发神经变性,强调它对神经健康的必要性。目前的治疗研究主要针对有害蛋白质聚集体的清除和症状管理。针对VPS35的创新治疗方法正在研究中,尽管充分了解机制和最佳目标策略仍然是一个挑战。
    此评论提供了VPS35发现的详细信息,它在神经退行性机制中的作用——特别是在帕金森氏症和阿尔茨海默氏症中——及其与其他疾病的联系。它照亮了对VPS35在发展中的功能的最新见解,疾病,作为治疗靶点。
    VPS35是细胞功能和疾病关联的组成部分,使其成为开发疗法的重要候选人。调节VPS35活性的进展可能导致突破性治疗,不仅减缓疾病进展,而且还可能作为神经变性风险的生物标志物,标志着在管理这些复杂条件方面向前迈出了一步。
    UNASSIGNED: Vacuolar Protein Sorting 35 (VPS35) is pivotal in the retromer complex, governing transmembrane protein trafficking within cells, and its dysfunction is implicated in neurodegenerative diseases. A missense mutation, Asp620Asn (D620N), specifically ties to familial late-onset Parkinson\'s, while reduced VPS35 levels are observed in Alzheimer\'s, amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and tauopathies. VPS35\'s absence in certain neurons during development can initiate neurodegeneration, highlighting its necessity for neural health. Present therapeutic research mainly targets the clearance of harmful protein aggregates and symptom management. Innovative treatments focusing on VPS35 are under investigation, although fully understanding the mechanisms and optimal targeting strategies remain a challenge.
    UNASSIGNED: This review offers a detailed account of VPS35\'s discovery, its role in neurodegenerative mechanisms - especially in Parkinson\'s and Alzheimer\'s - and its link to other disorders. It shines alight on recent insights into VPS35\'s function in development, disease, and as a therapeutic target.
    UNASSIGNED: VPS35 is integral to cellular function and disease association, making it a significant candidate for developing therapies. Progress in modulating VPS35\'s activity may lead to breakthrough treatments that not only slow disease progression but may also act as biomarkers for neurodegeneration risk, marking a step forward in managing these complex conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于使用tamA和tamB突变菌株在体内进行的实验以及使用生物物理方法在体外进行的实验,已经提出了易位和组装模块(TAM)在变形杆菌中的一小部分外膜蛋白(OMP)的组装中起关键作用。TAM由OMP(TamA)和通过单个α螺旋(TamB)锚定到内膜的周质蛋白组成。在这里,我们检查了纯化的大肠杆菌复合物在体外重构为蛋白脂质体后的功能。我们发现,TAM催化四个模型OMP的组装,以及β桶组装机(BAM),一种含有TamA同系物(BamA)并催化几乎所有大肠杆菌OMP组装的通用杂寡聚物。与以前的结果一致,TamA和TamB都是显著的TAM活性所需要的。我们的研究提供了TAM可以作为独立的OMP插入酶发挥作用的直接证据,并描述了一种新的方法来获得对TAM功能的见解。
    The translocation and assembly module (TAM) has been proposed to play a crucial role in the assembly of a small subset of outer membrane proteins (OMPs) in Proteobacteria based on experiments conducted in vivo using tamA and tamB mutant strains and in vitro using biophysical methods. TAM consists of an OMP (TamA) and a periplasmic protein that is anchored to the inner membrane by a single α helix (TamB). Here we examine the function of the purified E. coli complex in vitro after reconstituting it into proteoliposomes. We find that TAM catalyzes the assembly of four model OMPs nearly as well as the β-barrel assembly machine (BAM), a universal heterooligomer that contains a TamA homolog (BamA) and that catalyzes the assembly of almost all E. coli OMPs. Consistent with previous results, both TamA and TamB are required for significant TAM activity. Our study provides direct evidence that TAM can function as an independent OMP insertase and describes a new method to gain insights into TAM function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NLRP3炎性体激活,细胞因子分泌和焦亡对不同刺激的反应至关重要,与各种疾病密切相关。在刺激时,NLRP3经历亚细胞膜运输和构象重排,在微管组织中心(MTOC)为炎症小体组装做准备。这里,我们使用人类和鼠细胞阐明了这些有序过程的协调机制。具体来说,NLRP3通过棕榈酰转移酶zDHHC1在两个位点进行棕榈酰化,促进其在亚细胞膜之间的运输,包括线粒体,跨高尔基网络(TGN),和内体。这种动态贩运最终导致NLRP3本地化为MTOC,其中LATS1/2,在启动期间预先招募到MTOC,磷酸化NLRP3以进一步促进其与NIMA相关激酶7(NEK7)的相互作用,最终导致NLRP3完全激活。始终如一,Zdhhc1缺乏减轻了LPS诱导的炎症,并在小鼠中提供了针对死亡的保护。总之,我们的发现为NLRP3膜运输和炎症体激活的调节提供了有价值的见解,由棕榈酰化和磷酸化事件控制。
    NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号