nickel oxide

氧化镍
  • 文章类型: Journal Article
    镍/氧化钇稳定的氧化锆(YSZ)复合材料是固体氧化物电池最常用的燃料电极。虽然Ni/YSZ在运行条件下的微观结构变化已经被彻底研究,在工作条件下,有关Ni/YSZ表面化学的知识有限。在这项研究中,我们研究了在开路和极化条件下Ni/YSZ电极与水蒸气之间的相互作用,利用近环境压力软和硬X射线光电子能谱。对具有常规多孔Ni/YSZ复合金属陶瓷阴极的微型电池进行了改性,以促进对功能电极与YSZ电解质界面附近区域的直接光谱观察。结果突出了H2和H2O气氛下Ni/YSZ的氧化态和组成的动态变化。我们还量化了杂质在电极表面上的积累。通过调整细胞的预处理,建立了H2O电还原过程中镍表面氧化态与电池电化学性能之间的相关性。明确表明,H2O电解中的镍表面氧化比Ni(OH)x更有利于NiO,提供关键的见解,在长期操作期间电极内的Ni相重新分布的机制。依赖于深度的光发射测量,结合理论定量模拟,结果表明,在H2O电解过程中,NiO和Ni相在表面均匀混合。这不同于气相氧化中NiO-壳/Ni-核结构的常规预期。这些发现为在与H2O电解相关的条件下Ni/YSZ电极的表面化学提供了重要的见解。阐明它们对电池电化学性能的影响。
    Nickel/yttria-stabilized zirconia (YSZ) composites are the most commonly used fuel electrodes for solid oxide cells. While microstructural changes of Ni/YSZ during operational conditions have been thoroughly investigated, there is limited knowledge regarding Ni/YSZ surface chemistry under working conditions. In this study, we examine the interaction between Ni/YSZ electrodes and water vapor under open circuit and polarization conditions, utilizing near ambient pressure soft and hard X-ray photoelectron spectroscopies. Miniature cells with conventional porous Ni/YSZ composite cermet cathodes were modified to facilitate the direct spectroscopic observation of the functional electrode\'s areas close to the interface with the YSZ electrolyte. The results highlight dynamic changes in the oxidation state and composition of Ni/YSZ under H2 and H2O atmospheres. We also quantify the accumulation of impurities on the electrode surface. Through adjustments in the pretreatment of the cell, the correlation between the nickel surface oxidation state and the cell\'s electrochemical performance during H2O electroreduction is established. It is unequivocally shown that nickel surface oxidation in H2O electrolysis favors NiO over Ni(OH)x, providing critical insights into the mechanism of Ni-phase redistribution within the electrode during long-term operation. Depth-dependent photoemission measurements, combined with theoretical quantitative simulations, reveal that NiO and Ni phases are uniformly mixed on the surface during H2O electrolysis. This differs from the conventional expectation of a NiO-shell/Ni-core configuration in gas phase oxidation. These findings provide crucial insights into the surface chemistry of Ni/YSZ electrodes under conditions relevant to H2O electrolysis, elucidating their impact on the electrochemical performance of the cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对可穿戴和可附接显示器的日益增长的需求引发了对柔性量子点发光二极管(QLED)的极大兴趣。然而,在柔性衬底上制造和操作QLED的挑战由于缺乏具有对齐的能级的稳定和低温可处理的电荷注入/传输层而持续存在。在这项研究中,我们利用与柔性衬底相容的NiOx纳米粒子作为空穴注入层(HIL)。为了增强NiOxHIL的功函数,我们在NiOx纳米粒子的表面上引入了一种称为4-(三氟甲基)苯甲酸(4-CF3-BA)的自组装偶极改性剂。偶极分子通过吸附处理的掺入显著改变了NiOx纳米粒子的润湿性和电子特性,导致界面处NiO(OH)的形成和真空度的偏移。NiOx纳米粒子表面电子态的改变不仅通过减少空穴注入势垒来改善载流子平衡,而且还通过钝化膜中的缺陷来防止激子猝灭。因此,具有界面改性的基于NiOx的红色QLED表现出16.1cd/A的最大电流效率和10.3%的峰值外量子效率。这表示与控制装置相比几乎两倍的效率提高。温和的制造要求和低的退火温度表明偶极分子修饰的NiOx纳米颗粒在柔性光电器件中的潜在应用。
    The growing demand for wearable and attachable displays has sparked significant interest in flexible quantum-dot light-emitting diodes (QLEDs). However, the challenges of fabricating and operating QLEDs on flexible substrates persist due to the lack of stable and low-temperature processable charge-injection/-transporting layers with aligned energy levels. In this study, we utilized NiOx nanoparticles that are compatible with flexible substrates as a hole-injection layer (HIL). To enhance the work function of the NiOx HIL, we introduced a self-assembled dipole modifier called 4-(trifluoromethyl)benzoic acid (4-CF3-BA) onto the surface of the NiOx nanoparticles. The incorporation of the dipole molecules through adsorption treatment has significantly changed the wettability and electronic characteristics of NiOx nanoparticles, resulting in the formation of NiO(OH) at the interface and a shift in vacuum level. The alteration of surface electronic states of the NiOx nanoparticles not only improves the carrier balance by reducing the hole injection barrier but also prevents exciton quenching by passivating defects in the film. Consequently, the NiOx-based red QLEDs with interfacial modification demonstrate a maximum current efficiency of 16.1 cd/A and a peak external quantum efficiency of 10.3%. This represents a nearly twofold efficiency enhancement compared to control devices. The mild fabrication requirements and low annealing temperatures suggest potential applications of dipole molecule-modified NiOx nanoparticles in flexible optoelectronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    晶面和缺陷工程对于设计非均相催化剂至关重要。在这项研究中,使用不同的溶剂来生成具有不同形状的NiO(六边形层,棒,和球体)使用镍基金属有机骨架(MOFs)作为前体。结果表明,具有不同形貌的NiO的暴露晶面彼此不同。各种表征技术和密度泛函理论(DFT)计算表明,六方层状NiO(NiO-L)具有优异的低温还原性和氧迁移能力。NiO-L的(111)晶面含有较多的晶格缺陷和氧空位,由于其最高的O2吸附能,导致丙烷氧化增强。此外,表面活性氧和表面氧空位浓度越高,NiO催化剂的C-H活化能越低,因此对丙烷氧化的催化活性越好。因此,NiO-L对丙烷氧化具有显著的催化活性和良好的稳定性。这项研究为控制NiO晶体晶面提供了一种简单的策略,并证明了氧缺陷可以更容易地形成在NiO(111)晶面上,从而有利于丙烷中C-H键的活化。此外,这项工作的结果可以扩展到其他领域,如丙烷氧化为丙烯,燃料电池,和光催化。
    Crystal facet and defect engineering are crucial for designing heterogeneous catalysts. In this study, different solvents were utilized to generate NiO with distinct shapes (hexagonal layers, rods, and spheres) using nickel-based metal-organic frameworks (MOFs) as precursors. It was shown that the exposed crystal facets of NiO with different morphologies differed from each other. Various characterization techniques and density functional theory (DFT) calculations revealed that hexagonal-layered NiO (NiO-L) possessed excellent low-temperature reducibility and oxygen migration ability. The (111) crystal plane of NiO-L contained more lattice defects and oxygen vacancies, resulting in enhanced propane oxidation due to its highest O2 adsorption energy. Furthermore, the higher the surface active oxygen species and surface oxygen vacancy concentrations, the lower the C-H activation energy of the NiO catalyst and hence the better the catalytic activity for the oxidation of propane. Consequently, NiO-L exhibited remarkable catalytic activity and good stability for propane oxidation. This study provided a simple strategy for controlling NiO crystal facets, and demonstrated that the oxygen defects could be more easily formed on NiO(111) facets, thus would be beneficial for the activation of C-H bonds in propane. In addition, the results of this work can be extended to the other fields, such as propane oxidation to propene, fuel cells, and photocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有高光电转换效率(PCE)的空气处理钙钛矿太阳能电池(PSC)不仅可以进一步降低生产成本,而且可以促进其产业化。在环境空气中制备PSC的过程中,掩埋界面的接触不仅影响钙钛矿薄膜的结晶,而且影响界面载流子的输运,这直接关系到设备的性能。这里,我们通过引入3-巯基丙基三甲氧基硅烷(MPTMS,(CH3O)3Si(CH2)3SH)在氧化镍(NiOx)表面上。通过增强表面疏水性来改善钙钛矿薄膜的结晶;此外,MPTMS的SH基官能团钝化了界面处的未配位铅,有效地减少了钙钛矿底部界面的缺陷,抑制了界面的非辐射复合。此外,NiOx层和钙钛矿层之间的能级匹配较好。基于MPTMS的多种功能修改,器件的开路电压明显提高,和有效的空气处理的无甲胺(无MA)PSC与PCE达到21.0%。装置在手套箱中老化1000小时后仍保持85%的初始PCE。这项工作重点介绍了空气处理的无MAPSC中的界面修饰,以促进PSC的产业化。
    Air-processed perovskite solar cells (PSCs) with high photoelectric conversion efficiency (PCE) can not only further reduce the production cost but also promote its industrialization. During the preparation of the PSCs in ambient air, the contact of the buried interface not only affects the crystallization of the perovskite film but also affects the interface carrier transport, which is directly related to the performance of the device. Here, we optimize the buried interface by introducing 3-mercaptopropyltrimethoxysilane (MPTMS, (CH3O)3Si(CH2)3SH) on the nickel oxide (NiOx) surface. The crystallization of the perovskite film is improved by enhancing surface hydrophobicity; besides, the SH-based functional group of MPTMS passivates the uncoordinated lead at the interface, which effectively reduces the defects at the bottom interface of perovskite and inhibits the nonradiative recombination at the interface. Moreover, the energy level between the NiOx layer and the perovskite layer is better matched. Based on multiple functions of MPTMS modification, the open circuit voltage of the device is obviously improved, and efficient air-processed methylamine-free (MA-free) PSCs are realized with PCE reaching 21.0%. The device still maintains the initial PCE of 85% after 1000 h aging in the glovebox. This work highlights interface modification in air-processed MA-free PSCs to promote the industrialization of PSCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于高死亡率,细菌感染引起了全球关注,特别是随着耐药菌的增多和生物膜的形成。迫切需要创新战略来解决这一问题。使用纳米酶结合光热疗法(PTT)的化学动力疗法(CDT)研究显示出解决耐药细菌感染的潜力。然而,这种组合方法的有效性受到光吸收不足的限制。这项工作表明富含氧空位的NiOx纳米颗粒增强了CDT和PTT以克服这一挑战。NiOx中氧空位的存在可以减小其价带和导带之间的能隙,促进氧气吸附。NiOx在实验室和动物试验中表现出显著的抗菌特性和生物膜的完全根除。在动物脓肿模型中,NiOx在初始阶段表现出抗菌和抗炎作用,同时还通过影响免疫因子和促进胶原蛋白沉积和新生血管形成来促进伤口愈合和组织再生。具有积极的生物安全性和生物相容性,本文提出的氧空位增强CDT和PTT疗法有望有效灭菌,深层生物膜去除,和治疗由耐药细菌引起的感染。重要声明:本研究构建氧空位NiOx纳米颗粒(NiOxNP),以提高光热疗法和化学动力学疗法的疗效。NiOxNP中氧空位的存在有助于桥接其价带和导带之间的能隙,促进氧吸附和提高催化效率。在体内和体外抗菌实验中,NiOxNP表现出有效的抗菌和抗炎性质。此外,它通过调节免疫因子来帮助伤口愈合和组织再生,胶原蛋白沉积,和血管生成。这种方法提出了一种有前途的协作策略,用于利用镍基缺陷纳米材料对抗深层耐药细菌感染。
    Bacterial infections pose a global concern due to high fatality rates, particularly with the rise of drug-resistant bacteria and biofilm formation. There is an urgent need for innovative strategies to combat this issue. A study on chemodynamic therapy (CDT) using nanozymes in conjunction with photothermal therapy (PTT) has displayed potential in addressing drug-resistant bacterial infections. However, the effectiveness of this combined approach is limited by inadequate light absorption. This work suggests the NiOx nanoparticles enriched with oxygen vacancies enhance CDT and PTT to overcome this challenge. The presence of oxygen vacancies in NiOx can reduce the energy gap between its valence band and conduction band, facilitating oxygen adsorption. NiOx has exhibited notable antibacterial properties and complete eradication of biofilms in both laboratory and animal trials. In animal abscess models, NiOx demonstrated antibacterial and anti-inflammatory effects in the initial stages, while also promoting wound healing and tissue regeneration by influencing immune factors and encouraging collagen deposition and neovascularization. With positive biosafety and biocompatibility profiles, the oxygen vacancy-enhanced CDT and PTT therapy proposed in this article hold promise for effective sterilization, deep biofilm removal, and treatment of infections caused by drug-resistant bacteria. STATEMENT OF SIGNIFICANCE: This study constructs oxygen vacancies NiOx nanoparticles (NiOx NPs) to improve the efficacy of photothermal therapy and chemodynamic therapy. The presence of oxygen vacancies in NiOx NPs helps bridge the energy gap between its valence band and conduction band, facilitating oxygen adsorption and improving catalytic efficiency. In both in vivo and in vitro antibacterial experiments, NiOx NPs demonstrate effective antibacterial and anti-inflammatory properties. Furthermore, it aids in wound healing and tissue regeneration by modulating immune factors, collagen deposition, and angiogenesis. This approach presents a promising collaborative strategy for utilizing nickel-based defective nanomaterials in combating deep drug-resistant bacterial infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    定制基于氧化镍的电极中的全向电导率网络对于确保它们的长寿命非常重要,稳定性,高容量,和高速率能力。在这项研究中,使用镍金属纳米颗粒和三维氮掺杂的碳基体通过简化的硬质模板来修饰氧化镍复合材料NiO-Ni/N-C。当存在多孔氮掺杂碳基质时,将为锂离子电池中的电子和锂离子充电和放电建立一条快速的途径,从而在电池运行期间减轻NiO纳米颗粒的体积膨胀。此外,添加的Ni0离子用作活性位点,以提高NiO基电极的容量并增强其电导率。最佳NiO-Ni/N-C电极的多元素效应使其在0.1Ag-1时为120个回路表现出1310.8mAhg-1的容量,在20.0Ag-1时为441.5mAhg-1的倍率能力。所制备电极的动力学分析证明了它们的超快离子和电子电导率。这种硬模板策略减少了制备不同类型电极所需的路线数量,包括NiO基电极,并提高其电化学性能,使其能够用于储能应用。
    Tailoring the omnidirectional conductivity networks in nickel oxide-based electrodes is important for ensuring their long lifespan, stability, high capacity, and high-rate capability. In this study, nickel metal nanoparticles and a three-dimensional nitrogen-doped carbon matrix were used to embellish the nickel oxide composite NiO-Ni/N-C via simplified hard templating. When a porous nitrogen-doped carbon matrix is present, a rapid pathway would be established for charging and discharging the electrons and lithium ions in a lithium-ion battery, thereby alleviating the volumetric expansion of the NiO nanoparticles during the operation of the battery. Moreover, the Ni0 ions added to serve as active sites to improve the capacity of the NiO-based electrodes and strengthen their conductivities. The multielement-effects of the optimal NiO-Ni/N-C electrode leads it to exhibit a capacity of 1310.8 mAh g-1 at 0.1 A g-1 for 120 loops and a rate capability of 441.5 mAh g-1 at 20.0 A g-1. Kinetic analysis of the prepared electrodes proved their ultrafast ionic and electronic conductivities. This strategy of hard templating reduces the number of routes required for preparing different types of electrodes, including NiO-based electrodes, and improves their electrochemical performance to enable their use in energy storage applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于氧化镍(NiOx)的倒置钙钛矿太阳能电池是将钙钛矿光伏技术推向商业化的有希望的候选人,利用他们非凡的稳定性,可扩展性,和成本效益。然而,高价Ni4+与钙钛矿的界面氧化还原反应,除了钙钛矿中碘化物容易转化为I2之外,显著降低了NiOx基钙钛矿光伏的性能和重现性。这里,引入硼氢化钾(KBH4)作为双作用还原剂,这有效地避免了Ni4/钙钛矿界面反应,并减轻了钙钛矿薄膜中碘化物向I2的氧化。这种协同氧化还原调制显着抑制非辐射复合并增加载流子寿命。因此,NiOx基钙钛矿太阳能电池的功率转换效率达到了24.17%,在环境条件下制造的基于NiOx的钙钛矿太阳能模块的创纪录效率为20.2%。值得注意的是,当使用ISOS-L-2标准协议进行评估时,在环境空气中65°C的最大功率点下,在2000小时的连续照明之后,模块保持其初始效率的94%。
    Nickel oxide (NiOx)-based inverted perovskite solar cells stand as promising candidates for advancing perovskite photovoltaics towards commercialization, leveraging their remarkable stability, scalability, and cost-effectiveness. However, the interfacial redox reaction between high-valence Ni4+ and perovskite, alongside the facile conversion of iodide in perovskite into I2, significantly deteriorates the performance and reproducibility of NiOx-based perovskite photovoltaics. Here, potassium borohydride (KBH4) is introduced as a dual-action reductant, which effectively avoids the Ni4+/perovskite interface reaction and mitigates the iodide-to-I2 oxidation within perovskite film. This synergistic redox modulation significantly suppresses nonradiative recombination and increases the carrier lifetime. As a result, an impressive power conversion efficiency of 24.17% for NiOx-based perovskite solar cells is achieved, and a record efficiency of 20.2% for NiOx-based perovskite solar modules fabricated under ambient conditions. Notably, when evaluated using the ISOS-L-2 standard protocol, the module retains 94% of its initial efficiency after 2000 h of continuous illumination under maximum power point at 65 °C in ambient air.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧化镍(NiOX)具有优异的光学和半导体性能,是制备倒置钙钛矿太阳能电池的理想无机空穴传输材料。目前,关于开发基于NiOX的钙钛矿太阳能电池性能的主要研究集中在提高NiOX薄膜的电导率以及防止金属阳离子(NiOX表面上的Ni3)与有机阳离子(钙钛矿前体中的FA或MA)之间的氧化还原反应。NiOX/钙钛矿界面。在这项研究中,报道了基于NiOX的CsPbI2Br太阳能电池中的一种新型界面缺陷。也就是说,随着钙钛矿退火温度的变化,CsPbI2Br钙钛矿的Pb2可以扩散到NiOX表面的晶格中。Pb2+的扩散增加了Ni3+/Ni2+在NiOx表面的比例,导致NiOX和钙钛矿之间的界面处的陷阱态密度增加,最终导致太阳能电池的光伏性能严重下降。
    Nickel oxide (NiOX) is an ideal inorganic hole transport material for the fabrication of inverted perovskite solar cells owing to its excellent optical and semiconductor properties. Currently, the main research on developing the performance of NiOX-based perovskite solar cells focuses on improving the conductivity of NiOX thin films and preventing the redox reactions between metal cations (Ni3+ on the surface of NiOX) and organic cations (FA+ or MA+ in the perovskite precursors) at the NiOX/perovskite interface. In this study, a new type of interface defects in NiOX-based CsPbI2Br solar cells is reported. That is the Pb2+ from CsPbI2Br perovskites can diffuse into the lattice of NiOX surface as the annealing temperature of perovskites changes. The diffusion of Pb2+ increases the ratio of Ni3+/Ni2+ on the surface of NiOX, leading to an increase in the density of trap state at the interface between NiOX and perovskites, which eventually results in a serious decline in the photovoltaic performance of solar cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    能够检测和传输来自人体的温度数据的柔性温度传感器,环境,和电子设备在电子皮肤中具有巨大的应用潜力,人机交互,和防灾系统。尽管如此,制造具有卓越传感性能的柔性温度传感器仍然是一项艰巨的任务,主要是由于构建具有高灵敏度的内在柔性传感元件的复杂过程。在这项研究中,我们介绍了一种简便的原位两步合成方法,用于制造柔性纤维状NiO/碳纳米管纤维(CNTF)复合材料。由此产生的NiO/CNTF柔性温度传感器表现出出色的可变形性和温度传感特性,涵盖宽工作范围(-15-60°C)和高灵敏度(最大TCR为-20.2%°C-1和B值为3332K)。重要的是,使用有限元分析模拟彻底检查了传感器在各种应用条件下的机械和热行为。此外,温度传感器可以有效地捕获不同的热信号在可穿戴应用。值得注意的是,开发了温度监测和预警系统,以防止电子设备异常热失控导致的火灾事故。本文受版权保护。保留所有权利。
    Flexible temperature sensors capable of detecting and transmitting temperature data from the human body, environment, and electronic devices hold significant potential for applications in electronic skins, human-machine interactions, and disaster prevention systems. Nonetheless, fabricating flexible temperature sensors with exceptional sensing performance remains a formidable task, primarily due to the intricate process of constructing an intrinsically flexible sensing element with high sensitivity. In this study, a facile in situ two-step synthetic method is introduced for fabricating flexible fiber-shaped NiO/carbon nanotube fiber (CNTF) composites. The resulting NiO/CNTF flexible temperature sensors demonstrate outstanding deformability and temperature sensing characteristics, encompassing a broad working range (-15 to 60 °C) and high sensitivity (maximum TCR of -20.2% °C-1 and B value of 3332 K). Importantly, the mechanical and thermal behaviors of the sensor in various application conditions are thoroughly examined using finite element analysis simulations. Moreover, the temperature sensors can effectively capture diverse thermal signals in wearable applications. Notably, a temperature monitoring and warning system is developed to prevent fire accidents resulting from abnormal thermal runaway in electronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氧化镍(NiOx)作为有机太阳能电池(OSC)中的潜在空穴传输层(HTL)引起了广泛的关注,为传统HTL带来的稳定性挑战提供了潜在的解决方案,PEDOT:PSS,由酸度和吸湿性引起。然而,相对于供体聚合物,NiOx的较低功函数(WF)降低OSC中的电荷注入效率。在这里,我们通过稀土掺杂来定制NiOx纳米粒子,以优化WF并探索离子半径对其电子性质的影响。镧(La3+)和钇(Y3+)离子,具有更大的离子半径,有效掺杂在1%和3%,分别,而钪(Sc3+),具有较小的离子半径,允许增强5%的掺杂。较高的掺杂比显著提高了NiOx的WF。对于纯NiOx,5%Sc3+掺杂将WF从4.77eV提高到4.99eV,同时保持高导电性。因此,使用5%Sc掺杂的NiOx作为HTL将OSC的功率转换效率(PCE)提高到17.13%,超过15.64%的整洁的NiOx。通过引入还原剂邻苯二酚,进一步提高了18.42%。性能优于基于PEDOT:PSS的设备。此外,当用于三元混合体系(D18:N3:F-BTA3)时,实现了19.18%的令人印象深刻的PCE,在报告的OSC中,使用溶液处理的无机纳米粒子表现最好。本文受版权保护。保留所有权利。
    Nickel oxide (NiOx ) has garnered considerable attention as a prospective hole-transporting layer (HTL) in organic solar cells (OSCs), offering a potential solution to the stability challenges posed by traditional HTL, PEDOT:PSS, arising from acidity and hygroscopicity. Nevertheless, the lower work function (WF) of NiOx relative to donor polymers reduces charge injection efficiency in OSCs. Herein, NiOx nanoparticles are tailored through rare earth doping to optimize WF and the impact of ionic radius on their electronic properties is explored. Lanthanum (La3+ ) and yttrium (Y3+ ) ions, with larger ionic radii, are effectively doped at 1 and 3%, respectively, while scandium (Sc3+ ), with a smaller ion radius, allows enhanced 5% doping. Higher doping ratios significantly enhance WF of NiOx . A 5% Sc3+ doping raises WF to 4.99 eV from 4.77 eV for neat NiOx while maintaining high conductivity. Consequently, using 5% Sc-doped NiOx as HTL improves the power conversion efficiency (PCE) of OSCs to 17.13%, surpassing the 15.64% with the neat NiOx . Further enhancement to 18.42% is achieved by introducing the reductant catechol, outperforming the PEDOT:PSS-based devices. Additionally, when employed in a ternary blend system (D18:N3:F-BTA3), an impressive PCE of 19.18 % is realized, top-performing among reported OSCs utilizing solution-processed inorganic nanoparticles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号