magnetoelectric nanoparticles

磁电纳米粒子
  • 文章类型: Journal Article
    纳米材料的最新进展使纳米技术能够应用于尖端传感和驱动设备的开发。例如,可以监测纳米结构对各种刺激的集体和可预测的反应,以确定纳米材料的物理环境,如温度或施加的压力。为了实现最佳的传感和驱动能力,纳米结构应该是可控的。然而,当前的应用受到控制纳米结构的固有挑战的限制,这些挑战抵消了许多依赖于其面积或间距的传感机制。这项工作提出了一种利用纳米粒子的压电磁电特性的技术,以实现柔性和可穿戴贴片中的应变感测和致动。纳米粒子的排列是使用去磁场和计算模拟实现的,该模拟在各种类型的变形下确认了器件特性,然后进行了实验演示。该器件表现出良好的压电性能,疏水性,和身体运动感测能力,以及机器学习驱动的触摸感应/驱动功能。
    Recent advancements in nanomaterials have enabled the application of nanotechnology to the development of cutting-edge sensing and actuating devices. For instance, nanostructures\' collective and predictable responses to various stimuli can be monitored to determine the physical environment of the nanomaterial, such as temperature or applied pressure. To achieve optimal sensing and actuation capabilities, the nanostructures should be controllable. However, current applications are limited by inherent challenges in controlling nanostructures that counteract many sensing mechanisms that are reliant on their area or spacing. This work presents a technique utilizing the piezo-magnetoelectric properties of nanoparticles to enable strain sensing and actuation in a flexible and wearable patch. The alignment of nanoparticles has been achieved using demagnetization fields with computational simulations confirming device characteristics under various types of deformation followed by experimental demonstrations. The device exhibits favorable piezoelectric performance, hydrophobicity, and body motion-sensing capabilities, as well as machine learning-powered touch-sensing/actuating features.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电刺激被认为是促进神经损伤修复的关键,然而,由于伴随着仿生细胞生态位构建的非侵入性电负载的挑战,未能在体内得到广泛的应用。在这里,演示了用于远程和无线电电刺激的磁响应电3D矩阵的新概念。通过制备磁电核/壳结构的Fe3O4@BaTiO3NPs负载的透明质酸/胶原蛋白水凝胶,概括了相当大的磁电和天然神经细胞外基质的重要特征,证明了外加脉冲磁场可增强细胞水平和体内脊髓损伤的神经发生。这些发现为一类新型的远程控制和通过细胞外生态位模拟的水凝胶网络输送电力铺平了道路。不仅在神经发生方面,而且在具有更高分辨率的人机交互方面也有前景。
    Electrical stimulation is regarded pivotal to promote repair of nerve injuries, however, failed to get extensive application in vivo due to the challenges in noninvasive electrical loading accompanying with construction of biomimetic cell niche. Herein, a new concept of magneto responsive electric 3D matrix for remote and wireless electrical stimulation is demonstrated. By the preparation of magnetoelectric core/shell structured Fe3 O4 @BaTiO3 NPs-loaded hyaluronan/collagen hydrogels, which recapitulate considerable magneto-electricity and vital features of native neural extracellular matrix, the enhancement of neurogenesis both in cellular level and spinal cord injury in vivo with external pulsed magnetic field applied is proved. The findings pave the way for a novel class of remote controlling and delivering electricity through extracellular niches-mimicked hydrogel network, arising prospects not only in neurogenesis but also in human-computer interaction with higher resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号