关键词: BaTiO3@CoFe2O4 P(VDF-TrFE) flexible magnetoelectric nanoparticles multiferroics

来  源:   DOI:10.1021/acsnano.4c01102

Abstract:
Recent advancements in nanomaterials have enabled the application of nanotechnology to the development of cutting-edge sensing and actuating devices. For instance, nanostructures\' collective and predictable responses to various stimuli can be monitored to determine the physical environment of the nanomaterial, such as temperature or applied pressure. To achieve optimal sensing and actuation capabilities, the nanostructures should be controllable. However, current applications are limited by inherent challenges in controlling nanostructures that counteract many sensing mechanisms that are reliant on their area or spacing. This work presents a technique utilizing the piezo-magnetoelectric properties of nanoparticles to enable strain sensing and actuation in a flexible and wearable patch. The alignment of nanoparticles has been achieved using demagnetization fields with computational simulations confirming device characteristics under various types of deformation followed by experimental demonstrations. The device exhibits favorable piezoelectric performance, hydrophobicity, and body motion-sensing capabilities, as well as machine learning-powered touch-sensing/actuating features.
摘要:
纳米材料的最新进展使纳米技术能够应用于尖端传感和驱动设备的开发。例如,可以监测纳米结构对各种刺激的集体和可预测的反应,以确定纳米材料的物理环境,如温度或施加的压力。为了实现最佳的传感和驱动能力,纳米结构应该是可控的。然而,当前的应用受到控制纳米结构的固有挑战的限制,这些挑战抵消了许多依赖于其面积或间距的传感机制。这项工作提出了一种利用纳米粒子的压电磁电特性的技术,以实现柔性和可穿戴贴片中的应变感测和致动。纳米粒子的排列是使用去磁场和计算模拟实现的,该模拟在各种类型的变形下确认了器件特性,然后进行了实验演示。该器件表现出良好的压电性能,疏水性,和身体运动感测能力,以及机器学习驱动的触摸感应/驱动功能。
公众号