gene editing

基因编辑
  • 文章类型: Journal Article
    蓝藻是重要的初级生产者,通过光合作用贡献了全球25%的碳固定。它们是研究光合作用的模式生物,是合成生物学的重要细胞工厂。为了在蓝藻中进行有效的遗传解剖和代谢工程,需要有效和准确的遗传操作工具。然而,通过传统的基于同源重组的方法和最近开发的CRISPR-Cas基因编辑系统在蓝藻中的遗传操作需要复杂的克隆步骤,特别是在多位点编辑和单碱基突变过程中。这限制了对蓝藻的广泛研究,降低了其应用潜力。在这项研究中,开发了一种高效,便捷的胞嘧啶碱基编辑系统,该系统可以快速,精确地在集胞藻和Anabaena的基因组中进行C→T点突变和基因失活。该碱基编辑系统还能够进行有效的多重编辑,并且可以在通过蔗糖反向选择编辑后容易地固化。这项工作将扩展有关蓝藻工程的知识库。这项研究的结果将鼓励蓝藻的生物技术应用。
    Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    畜牧业生产对温室气体(GHG)排放特别是甲烷(CH4)排放有显著贡献,从而影响气候变化。为了进一步解决这个问题,至关重要的是建立战略,同时提高反刍动物的生产力,同时减少温室气体排放,特别是来自牛,绵羊,还有山羊.最近的进展揭示了通过遗传选择来调节瘤胃微生物生态系统以减少甲烷(CH4)产生的潜力。通过微生物基因组编辑,包括CRISPR/Cas9,TALEN(转录激活因子样效应核酸酶),ZFN(锌指核酸酶),RNA干扰(RNAi),Pime编辑,碱基编辑和双链无断裂(无DSB)。这些技术可以实现精确的遗传修饰,提供机会来增强减少环境影响和优化代谢途径的性状。此外,各种与营养相关的措施在不同程度上减少甲烷排放方面显示出希望。这篇综述旨在通过利用CRISPR/Cas9技术来设计瘤胃内的微生物聚生体,提出减少反刍动物甲烷排放的面向未来的观点。最终目标是开发可持续的畜牧业生产方法,有效减少甲烷排放,同时保持动物健康和生产力。
    Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碱基编辑代表了一种尖端的基因组编辑技术,该技术利用CRISPR系统将碱基脱氨酶高精度地引导到特定的基因组位点,促进单个核苷酸的靶向改变。与传统的基因编辑方法不同,碱基编辑不需要DNA双链断裂或供体模板。它的功能独立于细胞DNA修复机制,在效率和准确性方面提供了显著的优势。在这次审查中,我们总结了各种DNA碱基编辑器的核心设计原则,他们独特的编辑特征,和策略来完善它们的功效。我们还总结了它们在作物遗传改良中的应用,并探讨了它们对森林基因工程的潜在贡献。
    Base editing represents a cutting-edge genome editing technique that utilizes the CRISPR system to guide base deaminases with high precision to specific genomic sites, facilitating the targeted alteration of individual nucleotides. Unlike traditional gene editing approaches, base editing does not require DNA double-strand breaks or donor templates. It functions independently of the cellular DNA repair machinery, offering significant advantages in terms of both efficiency and accuracy. In this review, we summarize the core design principles of various DNA base editors, their distinctive editing characteristics, and tactics to refine their efficacy. We also summarize their applications in crop genetic improvement and explore their potential contributions to forest genetic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:碱基编辑是人工进化创造等位基因多样性并改善农艺性状的强大工具。然而,每个sgRNA靶标的巨大进化潜力被忽视了。并且目前没有高通量方法用于基于大的突变池在单个靶标中产生和表征尽可能多的变化以允许植物中的快速基因定向进化。
    结果:在这项研究中,我们建立了一个有效的种系特异性进化系统来筛选拟南芥中有益的等位基因,可用于作物改良。该系统基于强大的卵细胞特异性胞嘧啶碱基编辑器和拟南芥的大种子生产,这使得具有未编辑的野生型等位基因的每个T1植物能够产生数千个独立的T2突变系。它有能力创造广泛的突变系,包括那些含有非典型碱基替换的,以及提供一种节省空间和劳力的方式来存储和筛选产生的突变库。使用这个系统,我们有效地产生抗除草剂的EPSPS,ALS,和可用于作物育种的HPPD变体。
    结论:这里,我们证明了碱基编辑介导的人工进化对每个sgRNA靶标的巨大潜力,并设计了一个有效的系统来进行深度进化以利用这一潜力。
    BACKGROUND: Base editing is a powerful tool for artificial evolution to create allelic diversity and improve agronomic traits. However, the great evolutionary potential for every sgRNA target has been overlooked. And there is currently no high-throughput method for generating and characterizing as many changes in a single target as possible based on large mutant pools to permit rapid gene directed evolution in plants.
    RESULTS: In this study, we establish an efficient germline-specific evolution system to screen beneficial alleles in Arabidopsis which could be applied for crop improvement. This system is based on a strong egg cell-specific cytosine base editor and the large seed production of Arabidopsis, which enables each T1 plant with unedited wild type alleles to produce thousands of independent T2 mutant lines. It has the ability of creating a wide range of mutant lines, including those containing atypical base substitutions, and as well providing a space- and labor-saving way to store and screen the resulting mutant libraries. Using this system, we efficiently generate herbicide-resistant EPSPS, ALS, and HPPD variants that could be used in crop breeding.
    CONCLUSIONS: Here, we demonstrate the significant potential of base editing-mediated artificial evolution for each sgRNA target and devised an efficient system for conducting deep evolution to harness this potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    白粉病(PM),是由新多药Oidium引发的,对番茄植物(SolanumlycopersicumL.)的生产力构成了重大威胁和主要关注。植物中易感性(S)基因的存在促进了病原体的增殖,它们的功能障碍可导致隐性遗传的广谱和持久的抗性类型。过去的研究表明,破坏DND1(防御无死亡1)的功能会增加植物对各种病原体的抵抗力,如白粉病(PM),但这是以对植物的整体健康和活力产生负面影响为代价的。为了研究在提高抗病性的同时将dnd1突变的不利影响降至最低的可能性,设计了一种CRISPR-Cas9构建体,该构建体具有针对SlDND1的三个外显子的四个单向导RNA(Solyc02g088560.4.1),并通过根癌农杆菌介导的转化将其引入番茄品种Moneymaker(MM)。将三个T1系(命名为E1、E3和E4)与MM杂交,然后自交以产生TF2家族。与杂合(DND1/dnd1)和野生型(DND1/DND1)相比,纯合状态的所有TF2植物dnd1/dnd1均显示出减少的PM症状。两个完全敲除(KO)突变事件(E1和E4)编码截短的DND1蛋白,表现出明显的矮化和自身坏死表型,而突变事件E3包含3个氨基酸的缺失,显示正常的身高增长,较少的自坏死斑点。对参考蛋白和突变蛋白的3D结构的分析揭示了源自E3的蛋白中的显著构象改变,潜在地影响其功能。使用Illumina技术对dnd1/dnd1TF2系(TV181848-9,E3)进行了全基因组测序,这证实了在选定的基因组区域中不存在脱靶突变。此外,没有检测到Cas9基因的痕迹,表明它通过隔离消除。我们的发现证实了DND1在番茄中作为S基因的作用,因为该基因的受损会导致对O.nomoppici的易感性显着降低。此外,我们提供,第一次,与先前报道的dnd1突变等位基因相比,具有适应性优势的dnd1突变等位基因(E3),表明一种可能的方式来繁殖与dnd1突变体。
    Powdery mildew (PM), triggered by Oidium neolycopersici, represents a significant threat and a major concern for the productivity of tomato plants (Solanum lycopersicum L.). The presence of susceptibility (S) genes in plants facilitates pathogen proliferation and their dysfunction can lead to a recessively inherited broad-spectrum and durable type of resistance. Past studies have demonstrated that disrupting the function of DND1 (Defense No Death 1) increases plant resilience against various pathogens, such as powdery mildew (PM), but this comes at the cost of negatively affecting the overall health and vigor of the plant. To investigate the possibility of minimizing the adverse effects of the dnd1 mutation while boosting disease resistance, a CRISPR-Cas9 construct with four single guide RNAs targeting three exons of SlDND1 (Solyc02g088560.4.1) was designed and introduced into the tomato variety Moneymaker (MM) through Agrobacterium tumefaciens-mediated transformation. Three T1 lines (named E1, E3 and E4) were crossed with MM and then selfed to produce TF2 families. All the TF2 plants in homozygous state dnd1/dnd1, showed reduced PM symptoms compared to the heterozygous (DND1/dnd1) and wild type (DND1/DND1) ones. Two full knock-out (KO) mutant events (E1 and E4) encoding truncated DND1 proteins, exhibited clear dwarfness and auto-necrosis phenotypes, while mutant event E3 harbouring deletions of 3 amino acids, showed normal growth in height with less auto-necrotic spots. Analysis of the 3D structures of both the reference and the mutant proteins revealed significant conformational alterations in the protein derived from E3, potentially impacting its function. A dnd1/dnd1 TF2 line (TV181848-9, E3) underwent whole-genome sequencing using Illumina technology, which confirmed the absence of off-target mutations in selected genomic areas. Additionally, no traces of the Cas9 gene were detected, indicating its elimination through segregation. Our findings confirm the role of DND1 as an S-gene in tomato because impairment of this gene leads to a notable reduction in susceptibility to O. neolycopersici. Moreover, we provide, for the first time, a dnd1 mutant allele (E3) that exhibits fitness advantages in comparison with previously reported dnd1 mutant alleles, indicating a possible way to breed with dnd1 mutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管小分子和重组蛋白具有增强同源定向修复(HDR)效率的潜力,单链DNA(ssDNA)供体,按照目前的设计和化学修饰,对于精确的基因编辑来说仍然是次优的。这里,我们筛选了DNA修复相关蛋白的偏向ssDNA结合序列,并将RAD51优选序列设计为ssDNA供体的HDR增强模块。具有这些模块的供体对RAD51表现出增强的亲和力,从而当与Cas9、nCas9和Cas12a合作时,增强各种基因组基因座和细胞类型的HDR效率。通过与非同源末端连接(NHEJ)或HDRobust策略的抑制剂组合,这些模块化ssDNA供体可实现高达90.03%(中位数74.81%)的HDR效率。靶向内源性蛋白质的HDR增强模块能够实现无化学修饰的策略,以提高ssDNA供体对精确基因编辑的功效。
    Despite the potential of small molecules and recombinant proteins to enhance the efficiency of homology-directed repair (HDR), single-stranded DNA (ssDNA) donors, as currently designed and chemically modified, remain suboptimal for precise gene editing. Here, we screen the biased ssDNA binding sequences of DNA repair-related proteins and engineer RAD51-preferred sequences into HDR-boosting modules for ssDNA donors. Donors with these modules exhibit an augmented affinity for RAD51, thereby enhancing HDR efficiency across various genomic loci and cell types when cooperated with Cas9, nCas9, and Cas12a. By combining with an inhibitor of non-homologous end joining (NHEJ) or the HDRobust strategy, these modular ssDNA donors achieve up to 90.03% (median 74.81%) HDR efficiency. The HDR-boosting modules targeting an endogenous protein enable a chemical modification-free strategy to improve the efficacy of ssDNA donors for precise gene editing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    集群定期间隔短回文重复(CRISPR)/Cas9系统,基因工程的突破性创新,彻底改变了我们克服复杂疾病的方法,最终获得CASGEVY™批准用于镰状细胞性贫血。来源于微生物免疫防御机制,CRISPR/Cas9,以精确度为特征,基因编辑的可操作性和普遍性,已被用作精确操纵哺乳动物DNA的通用工具。在将其应用于实践的过程中,新的直系同源物和变体的连续开发永远不会停止。它有助于了解疾病的本质,特别是癌症,这对诊断至关重要,预防,和治疗。CRISPR/Cas9不仅用于研究肿瘤基因的功能,还用于模拟不同的癌症。提供对肿瘤生物学有价值的见解,阻力,和免疫逃避。在癌症治疗中,CRISPR/Cas9有助于开发单独和精确的癌症疗法,可以选择性地激活或失活肿瘤细胞内的基因。旨在削弱肿瘤的生长和侵袭,并使癌细胞对治疗敏感。此外,它促进了创新治疗的发展,提高重编程免疫细胞的靶向效率,以CAR-T方案的进展为例。除了治疗,它是筛选易感基因的有力工具,提供了在肿瘤主动或进展之前进行干预的可能性。然而,尽管潜力巨大,CRISPR/Cas9在癌症研究和治疗中的应用伴随着显著的疗效,效率,技术,和安全考虑。需要不断升级的技术创新来解决这些问题。CRISPR/Cas9系统正在彻底改变癌症研究和治疗,为我们对癌症的理解和管理开辟了新的途径。将这种不断发展的技术整合到临床实践中,有望开创精准肿瘤学的新时代。有针对性的,个性化,和癌症患者的潜在治愈疗法。
    The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It\'s conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质疗法在治疗多种疾病中起着至关重要的作用,从感染到遗传性疾病。然而,它们输送到肝脏以外的目标组织,比如肺,仍然是一个巨大的挑战。这里,我们报告了一种普遍适用的策略,通过对肺特异性超分子纳米颗粒(LSNPs)进行工程化,用于肺靶向蛋白递送.这些纳米颗粒是通过金属有机多面体(MOP)的分层自组装设计的,具有定制的表面化学,使蛋白质封装和特异性肺亲和力静脉给药后。我们设计的LSNPs不仅解决了细胞膜不通透性的蛋白质和非特异性组织分布的蛋白质传递的障碍,而且在提供各种蛋白质方面也表现出非凡的多功能性,包括对抗炎和基于CRISPR的肺部基因组编辑至关重要的那些,跨越多种动物物种,包括老鼠,兔子,还有狗.值得注意的是,使用LSNPs递送抗菌蛋白可有效缓解急性细菌性肺炎,证明了巨大的治疗潜力。我们的策略不仅克服了组织特异性蛋白质递送的障碍,而且为遗传性疾病的靶向治疗和对抗抗生素耐药性铺平了道路。提供精确的蛋白质治疗的通用解决方案。
    Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血管内皮生长因子受体(VEGFR)-2是血管生成的关键开关,这是在各种人类疾病中观察到的。在这项研究中,一种用于高级主编辑(PE)的新颖系统,称为PE6h,被开发,由双慢病毒载体组成:(1)与逆转录酶和增强的PE指导RNA融合的规则成簇间隔的回文重复相关蛋白9(H840A)切口酶,以及(2)具有切口指导RNA的显性阴性(DN)MutL同源物1基因。PE6h用于编辑VEGFR2(c.18315T>A,50.8%)产生提前终止密码子(来自AAG的TAG),导致在人视网膜微血管内皮细胞(HRECs)中产生DN-VEGFR2(787aa)。DN-VEGFR2阻碍VEGF诱导的VEGFR2、Akt、和体外PE6h编辑的HREC中的细胞外信号调节激酶1/2和管形成。总的来说,我们的结果强调了PE6h在体内抑制血管生成的潜力.
    Vascular endothelial growth factor receptor (VEGFR)-2 is a key switch for angiogenesis, which is observed in various human diseases. In this study, a novel system for advanced prime editing (PE), termed PE6h, is developed, consisting of dual lentiviral vectors: (1) a clustered regularly interspaced palindromic repeat-associated protein 9 (H840A) nickase fused with reverse transcriptase and an enhanced PE guide RNA and (2) a dominant negative (DN) MutL homolog 1 gene with nicking guide RNA. PE6h was used to edit VEGFR2 (c.18315T>A, 50.8%) to generate a premature stop codon (TAG from AAG), resulting in the production of DN-VEGFR2 (787 aa) in human retinal microvascular endothelial cells (HRECs). DN-VEGFR2 impeded VEGF-induced phosphorylation of VEGFR2, Akt, and extracellular signal-regulated kinase-1/2 and tube formation in PE6h-edited HRECs in vitro. Overall, our results highlight the potential of PE6h to inhibit angiogenesis in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号