gene editing

基因编辑
  • 文章类型: Journal Article
    生物医学研究见证了制造嵌合抗原受体T细胞(CAR-T)疗法的重大进展,标志着细胞免疫疗法的变革时代。然而,现有的自体细胞疗法的制造方法仍然存在与成本相关的几个挑战,免疫细胞来源,安全风险,和可扩展性。这些挑战促使最近努力使用自动化封闭系统生物反应器和使用人工智能创建的模型来优化细胞疗法的工艺开发和制造。同时,非病毒基因转移方法,如mRNA,CRISPR基因组编辑,转座子正被用于改造T细胞和其他免疫细胞,如巨噬细胞和自然杀伤细胞。正在开发原始免疫细胞和干细胞的替代来源,以产生普遍的,同种异体疗法,信号从当前的自体范式转变。这些多方面的制造业创新强调了集体努力推动这种治疗方法朝着更广泛的临床采用和改善癌症治疗领域不断发展的患者结果。这里,我们回顾了当前的CAR免疫细胞制造策略,并强调了细胞疗法扩大规模的最新进展,自动化,过程开发,和工程。
    Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血栓性血小板减少性紫癜(TTP)是一种潜在致命的血液疾病,由于严重缺乏血浆ADAMTS13(一种具有1型重复的血栓形成蛋白和金属蛋白酶,13)活动。ADAMTS13通过超大型血管性血友病因子(VWF)的蛋白水解裂解对正常止血至关重要。自2001年发现ADAMTS13以来,已经建立了几种TTP动物模型。在这篇叙述性评论中,我们总结了迄今为止建立的TTP动物模型的创建和表征。
    我们从1969年到2022年通过PubMed进行了文献检索,使用自由文本:TTP和动物模型。我们发现了67篇同行评审的文章,但只有33篇文章被纳入审查,34篇没有讨论TTP的文章被排除在外。
    在小鼠中建立和充分表征的基因修饰或抗体介导的TTP模型,rat,狒狒,还有斑马鱼.然而,我们仍然迫切需要一个真正的自身免疫TTP动物模型。
    这些动物模型使研究人员能够进一步评估各种潜在的环境因素和/或遗传修饰因素对发病机理的贡献。programming,和TTP的结果;并帮助评估预防和治疗遗传性和获得性TTP的新方法的有效性和安全性。
    UNASSIGNED: Thrombotic thrombocytopenic purpura (TTP) is a potentially fatal blood disorder, resulting from severe deficiency of plasma ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats, 13) activity. ADAMTS13 is crucial for normal hemostasis through proteolytic cleavage of ultra large von Willebrand factor (VWF). Since the discovery of ADAMTS13 in 2001, several animal models for TTP have been established. In this narrative review, we summarize the creation and characterization of the established animal models for TTP to date.
    UNASSIGNED: We performed a literature search through PubMed from 1969 to 2022 using free text: TTP and animal model. We found 67 peer-reviewed articles but only 33 articles were included for review and 34 articles that did not discuss TTP were excluded.
    UNASSIGNED: There were genetically modified or antibody-mediated TTP models being established and fully characterized in mouse, rat, baboon, and zebrafish. However, we are still in urgent need of a true autoimmune TTP animal model.
    UNASSIGNED: These animal models allowed researchers to further evaluate the contribution of various potential environmental factors and/or genetic modifiers to the pathogenesis, progression, and outcome of TTP; and to help assess the efficacy and safety of novel approaches for prevention and treatment of both hereditary and acquired TTP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症仍然是一个巨大的全球健康挑战。其发病率和死亡率持续反映了其重大影响。精确肿瘤学的出现为靶向以前被认为是常规疗法和限制脱靶细胞毒性的“不可药用”的致癌驱动因素提供了突破。已经彻底改变了精确肿瘤学领域的两种突破性技术主要是CRISPR-Cas9基因编辑和最近的PROTAC(PROteolidTArgetingChimeras)靶向蛋白质降解技术。特别是CRISPR-Cas9,由于其精确修饰DNA序列的卓越能力,获得了广泛的认可和赞誉。而不是编辑遗传密码,PROTACs利用泛素蛋白酶体降解机制来选择性地降解感兴趣的蛋白质。尽管CRISPR-Cas9和PROTAC技术的原理不同,他们的共同目标是推进精准肿瘤学,这两种方法在临床前和临床试验中都显示出巨大的潜力.CRISPR-Cas9已经证明了其在这一领域的临床潜力,由于其能够直接和间接地修饰基因,高效,可逆,适应性强,和组织特异性方式,以及它作为诊断工具的潜力。另一方面,口服低剂量给药的能力,广泛瞄准,组织特异性,和可控性增强了PROTAC的临床潜力。因此,在精准肿瘤学领域,使用CRISPR技术的基因编辑彻底改变了针对性的干预措施,虽然PROTACs的出现通过实现选择性蛋白质降解进一步扩大了治疗领域。与其将它们视为精确肿瘤学领域中相互排斥或竞争的方法,它们的使用是上下文相关的(即,基于疾病的分子机制),它们可能可以协同使用,以补充CRISPR的优势,反之亦然。在这里,我们回顾了CRISPR和PROTAC设计的现状,以及它们在精确肿瘤学领域的临床潜力,临床试验数据,局限性,并比较它们在精确临床肿瘤学中的意义。
    Cancer continues to present a substantial global health challenge, with its incidence and mortality rates persistently reflecting its significant impact. The emergence of precision oncology has provided a breakthrough in targeting oncogenic drivers previously deemed \"undruggable\" by conventional therapeutics and by limiting off-target cytotoxicity. Two groundbreaking technologies that have revolutionized the field of precision oncology are primarily CRISPR-Cas9 gene editing and more recently PROTAC (PROteolysis TArgeting Chimeras) targeted protein degradation technology. CRISPR-Cas9, in particular, has gained widespread recognition and acclaim due to its remarkable ability to modify DNA sequences precisely. Rather than editing the genetic code, PROTACs harness the ubiquitin proteasome degradation machinery to degrade proteins of interest selectively. Even though CRISPR-Cas9 and PROTAC technologies operate on different principles, they share a common goal of advancing precision oncology whereby both approaches have demonstrated remarkable potential in preclinical and promising data in clinical trials. CRISPR-Cas9 has demonstrated its clinical potential in this field due to its ability to modify genes directly and indirectly in a precise, efficient, reversible, adaptable, and tissue-specific manner, and its potential as a diagnostic tool. On the other hand, the ability to administer in low doses orally, broad targeting, tissue specificity, and controllability have reinforced the clinical potential of PROTAC. Thus, in the field of precision oncology, gene editing using CRISPR technology has revolutionized targeted interventions, while the emergence of PROTACs has further expanded the therapeutic landscape by enabling selective protein degradation. Rather than viewing them as mutually exclusive or competing methods in the field of precision oncology, their use is context-dependent (i.e., based on the molecular mechanisms of the disease) and they potentially could be used synergistically complementing the strengths of CRISPR and vice versa. Herein, we review the current status of CRISPR and PROTAC designs and their implications in the field of precision oncology in terms of clinical potential, clinical trial data, limitations, and compare their implications in precision clinical oncology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蓝藻是重要的初级生产者,通过光合作用贡献了全球25%的碳固定。它们是研究光合作用的模式生物,是合成生物学的重要细胞工厂。为了在蓝藻中进行有效的遗传解剖和代谢工程,需要有效和准确的遗传操作工具。然而,通过传统的基于同源重组的方法和最近开发的CRISPR-Cas基因编辑系统在蓝藻中的遗传操作需要复杂的克隆步骤,特别是在多位点编辑和单碱基突变过程中。这限制了对蓝藻的广泛研究,降低了其应用潜力。在这项研究中,开发了一种高效,便捷的胞嘧啶碱基编辑系统,该系统可以快速,精确地在集胞藻和Anabaena的基因组中进行C→T点突变和基因失活。该碱基编辑系统还能够进行有效的多重编辑,并且可以在通过蔗糖反向选择编辑后容易地固化。这项工作将扩展有关蓝藻工程的知识库。这项研究的结果将鼓励蓝藻的生物技术应用。
    Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑膜炎奈瑟氏球菌的有效天然转化允许快速构建细菌突变体,其中目的基因被抗生素抗性盒中断或替换。然而,这被证明是一把双刃剑,即,尽管有助于这种重要的人类病原体的遗传表征,它限制了构建无抗生素抗性标记的无标记突变体的策略的开发。此外,在脑膜炎奈瑟球菌中也缺乏有效的补充或标记工具。在这项研究中,我们通过开发新的有效工具来构建无标记突变体(使用双重反选择策略),显着扩展了脑膜炎球菌遗传工具箱,遗传互补(使用整合载体),和细胞标记(使用自标记蛋白标签)。这个扩展的工具箱为更深入的脑膜炎奈瑟氏球菌遗传表征铺平了道路,也可能对其他奈瑟氏球菌物种有用。重要的脑膜炎奈瑟菌和淋病奈瑟菌是两种重要的人类病原体。专注于这些细菌的研究需要基因工程,这是由他们经历转变的自然能力所促进的。然而,突变工程的易用性导致奈瑟氏菌社区忽视了更复杂的基因编辑工具的开发,特别是对于脑膜炎奈瑟菌。在这项研究中,通过开发用于无标记突变体构建的新颖有效的工具,我们显着扩展了脑膜炎球菌遗传工具箱,遗传互补,和细胞标记。这个扩展的工具箱为更深入的脑膜炎奈瑟氏球菌遗传表征铺平了道路,也可能对其他奈瑟氏球菌物种有用。
    The efficient natural transformation of Neisseria meningitidis allows the rapid construction of bacterial mutants in which the genes of interest are interrupted or replaced by antibiotic-resistance cassettes. However, this proved to be a double-edged sword, i.e., although facilitating the genetic characterization of this important human pathogen, it has limited the development of strategies for constructing markerless mutants without antibiotic-resistance markers. In addition, efficient tools for complementation or labeling are also lacking in N. meningitidis. In this study, we significantly expand the meningococcal genetic toolbox by developing new and efficient tools for the construction of markerless mutants (using a dual counterselection strategy), genetic complementation (using integrative vectors), and cell labeling (using a self-labeling protein tag). This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.IMPORTANCENeisseria meningitidis and Neisseria gonorrhoeae are two important human pathogens. Research focusing on these bacteria requires genetic engineering, which is facilitated by their natural ability to undergo transformation. However, the ease of mutant engineering has led the Neisseria community to neglect the development of more sophisticated tools for gene editing, particularly for N. meningitidis. In this study, we have significantly expanded the meningococcal genetic toolbox by developing novel and efficient tools for markerless mutant construction, genetic complementation, and cell tagging. This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    果蝇遗传学的最大优势之一是其易于观察和选择的表型标记。小白色标记已被广泛用作果蝇转基因的转基因标记。携带迷你白色结构的苍蝇可以表现出各种眼睛颜色,从浅橙色到强烈的红色,取决于插入位点和基因剂量。因为迷你白色标记的两个副本显示出更强的橙色,这通常用于选择染色体重组后在单个染色体中同时携带两个转基因的后代。然而,Fly社区中的一些GAL4线最初具有非常强烈的红色眼睛。不使用另一个标记,比如GFP,产生具有强红眼GAL4和所需UAS转基因构建体的重组染色体可能是困难的。因此,我们决定将GAL4线的红色眼睛更改为橙色。为了改变苍蝇的眼睛颜色,我们用OK371-GAL4和elav-GAL4靶向白色基因的引导RNA测试了CRISPR/Cas9方法。经过简单的筛选,我们已经成功获得了橙眼OK371-GAL4和elav-GAL4的多个品系,它们仍然保持其原始表达模式。所有这些简单的实验都是由本科生进行的,允许他们了解各种不同的遗传实验和基因组编辑,同时通过创建将用于现实世界研究的果蝇线来为果蝇研究社区做出贡献。
    One of the greatest strengths of Drosophila genetics is its easily observable and selectable phenotypic markers. The mini-white marker has been widely used as a transgenic marker for Drosophila transgenesis. Flies carrying a mini-white construct can exhibit various eye colors ranging from pale orange to intense red, depending on the insertion site and gene dosage. Because the two copies of the mini-white marker show a stronger orange color, this is often used for selecting progenies carrying two transgenes together in a single chromosome after chromosomal recombination. However, some GAL4 lines available in the fly community originally have very strong red eyes. Without employing another marker, such as GFP, generating a recombinant chromosome with the strong red-eyed GAL4 and a desired UAS-transgene construct may be difficult. Therefore, we decided to change the red eyes of GAL4 lines to orange color. To change the eye color of the fly, we tested the CRISPR/Cas9 method with a guide RNA targeting the white gene with OK371-GAL4 and elav-GAL4. After a simple screening, we have successfully obtained multiple lines of orange-eyed OK371-GAL4 and elav-GAL4 that still maintain their original expression patterns. All of these simple experiments were performed by undergraduate students, allowing them to learn about a variety of different genetic experiments and genome editing while contributing to the fly research community by creating fruit fly lines that will be used in real-world research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    畜牧业生产对温室气体(GHG)排放特别是甲烷(CH4)排放有显著贡献,从而影响气候变化。为了进一步解决这个问题,至关重要的是建立战略,同时提高反刍动物的生产力,同时减少温室气体排放,特别是来自牛,绵羊,还有山羊.最近的进展揭示了通过遗传选择来调节瘤胃微生物生态系统以减少甲烷(CH4)产生的潜力。通过微生物基因组编辑,包括CRISPR/Cas9,TALEN(转录激活因子样效应核酸酶),ZFN(锌指核酸酶),RNA干扰(RNAi),Pime编辑,碱基编辑和双链无断裂(无DSB)。这些技术可以实现精确的遗传修饰,提供机会来增强减少环境影响和优化代谢途径的性状。此外,各种与营养相关的措施在不同程度上减少甲烷排放方面显示出希望。这篇综述旨在通过利用CRISPR/Cas9技术来设计瘤胃内的微生物聚生体,提出减少反刍动物甲烷排放的面向未来的观点。最终目标是开发可持续的畜牧业生产方法,有效减少甲烷排放,同时保持动物健康和生产力。
    Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,靶向基因组编辑已经成为创建动物模型不可或缺的工具,促进对控制无数生物过程的分子机制的全面探索。在这个科学景观中,小鼠减数分裂的研究引起了众多研究实验室的极大关注。CRISPR/Cas9基因组编辑系统的精确性和多功能性彻底改变了我们生成具有定制遗传改变的小鼠的能力。包括点突变和无效突变。这些遗传修饰为各种减数分裂基因及其相关变体的复杂功能提供了宝贵的见解。在这种情况下,我们提出了一个详细的最新协议,用于创建新的小鼠模型,每个都在关键减数分裂基因内进行特定的遗传修饰,通过CRISPR/Cas9技术的应用。此外,我们展示了两种不同的基因改造,在我们的实验室内完成,对于寻求阐明哺乳动物减数分裂分子复杂性的研究人员来说,这可以作为有价值的参考点。
    In recent years, targeted genome editing has emerged as an indispensable tool for creating animal models, facilitating a comprehensive exploration of the molecular mechanisms governing a myriad of biological processes. Within this scientific landscape, the investigation of meiosis in mice has attracted considerable attention across numerous research laboratories. The precision and versatility of the CRISPR/Cas9 genome editing system have revolutionized our ability to generate mice with tailored genetic alterations, including point mutations and null mutations. These genetic modifications have provided invaluable insights into the intricate functionality of various meiotic genes and their associated variants. In this context, we present a detailed state of the art protocol for the creation of novel mouse models, each bearing specific genetic modifications within key meiotic genes, through the application of CRISPR/Cas9 technology. Furthermore, we showcase two distinct genetic modifications, accomplished within our laboratory, that can serve as valuable reference points for researchers seeking to elucidate the molecular intricacies of meiosis in mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碱基编辑代表了一种尖端的基因组编辑技术,该技术利用CRISPR系统将碱基脱氨酶高精度地引导到特定的基因组位点,促进单个核苷酸的靶向改变。与传统的基因编辑方法不同,碱基编辑不需要DNA双链断裂或供体模板。它的功能独立于细胞DNA修复机制,在效率和准确性方面提供了显著的优势。在这次审查中,我们总结了各种DNA碱基编辑器的核心设计原则,他们独特的编辑特征,和策略来完善它们的功效。我们还总结了它们在作物遗传改良中的应用,并探讨了它们对森林基因工程的潜在贡献。
    Base editing represents a cutting-edge genome editing technique that utilizes the CRISPR system to guide base deaminases with high precision to specific genomic sites, facilitating the targeted alteration of individual nucleotides. Unlike traditional gene editing approaches, base editing does not require DNA double-strand breaks or donor templates. It functions independently of the cellular DNA repair machinery, offering significant advantages in terms of both efficiency and accuracy. In this review, we summarize the core design principles of various DNA base editors, their distinctive editing characteristics, and tactics to refine their efficacy. We also summarize their applications in crop genetic improvement and explore their potential contributions to forest genetic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号