cell engineering

细胞工程
  • 文章类型: Journal Article
    细胞命运可能是由一个共同的机制来调节的,而这台机器的部件还有待识别。在这里,我们报告了工程化细胞命运控制器NanogBiD的设计和测试,将SS18的BiD或BRG1相互作用域与Nanog融合。与在多种测试条件下无效的天然蛋白相比,NanogBiD有效地促进小鼠体细胞重编程。机制研究进一步表明,它通过募集预期的Brg/Brahma相关因子(BAF)复合物来调节染色质可及性并重组已知被规范Nanog占据的细胞状态特异性增强子,从而促进细胞命运的转变,导致包括Sall4,miR-302,Dppa5a和Sox15在内的多个基因的早熟激活。虽然我们还没有在其他物种中测试我们的方法,我们的发现表明,工程染色质调节剂可能提供了许多必要的工具,以工程细胞命运在细胞作为药物时代。
    Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    巨噬细胞通过吞噬肿瘤细胞在机体防御癌症的过程中发挥关键作用,呈递抗原,并激活适应性T细胞。然而,巨噬细胞本质上不能提供靶向的癌症免疫疗法。工程化过继细胞疗法通过修饰巨噬细胞来增强细胞的先天免疫应答并提高临床疗效,从而引入新的靶向和抗肿瘤能力。在这项研究中,我们开发了用于细胞免疫治疗的工程化巨噬细胞胆固醇-AS1411-M1(CAM1).为了瞄准巨噬细胞,将胆固醇-AS1411适体锚定到M1巨噬细胞的表面以产生CAM1而没有遗传修饰或细胞损伤。在小鼠乳腺癌细胞中,CAM1诱导的凋亡/死亡率明显高于未修饰的M1巨噬细胞。将AS1411锚定在巨噬细胞表面提供了构建用于肿瘤免疫治疗的工程巨噬细胞的新方法。
    Macrophages play a critical role in the body\'s defense against cancer by phagocytosing tumor cells, presenting antigens, and activating adaptive T cells. However, macrophages are intrinsically incapable of delivering targeted cancer immunotherapies. Engineered adoptive cell therapy introduces new targeting and antitumor capabilities by modifying macrophages to enhance the innate immune response of cells and improve clinical efficacy. In this study, we developed engineered macrophage cholesterol-AS1411-M1 (CAM1) for cellular immunotherapy. To target macrophages, cholesterol-AS1411 aptamers were anchored to the surface of M1 macrophages to produce CAM1 without genetic modification or cell damage. CAM1 induced significantly higher apoptosis/mortality than unmodified M1 macrophages in murine breast cancer cells. Anchoring AS1411 on the surface of macrophages provided a novel approach to construct engineered macrophages for tumor immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    外泌体表现出高生物利用度,生物稳定性,靶向特异性,低毒性,以及穿梭各种生物活性分子如蛋白质的低免疫原性,脂质,RNA,和DNA。天然外泌体,然而,产量有限,瞄准能力,和临床试验中的治疗效果。另一方面,工程外泌体已经证明了长期的循环,高稳定性,有针对性的交付,和有效的细胞内药物释放,引起了极大的关注。工程化的外泌体为开发下一代药物递送系统带来了新的见解,并在治疗应用中显示出巨大的潜力,比如肿瘤治疗,糖尿病管理,心血管疾病,组织再生和修复。在这次审查中,我们通过关注最新的细胞工程和外泌体工程策略,概述了与工程外泌体相关的最新进展。外泌体隔离方法,包括传统和新兴方法,系统比较了表征方法的进步。在工程外泌体的制备和应用方面进一步讨论了当前的挑战和未来的机遇。
    Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在人类细胞中目击,细胞内通路和治疗货物运输,包括基因编辑工具(例如,CRISPR-Cas9和转座子),核酸(例如,DNA,mRNA和siRNA),肽,和蛋白质(例如,酶和抗体),被严格限制以确保健康的细胞功能和行为。该原理在用于离体免疫疗法的嵌合抗原受体(CAR)-T细胞的递送机制中示例。特别是,CAR-T细胞的临床成功通过治愈以前无法治愈的血癌建立了新的治疗标准.该方法涉及交付,通常通过使用电穿孔(EP)和慢病毒,治疗性CAR基因进入患者自己的T细胞,然后将其设计为表达靶向和对抗血液癌症的CAR。但关键的困难在于对这些细胞进行基因操纵,而不会造成不可逆转的损害或功能丧失,同时将制造的复杂性降至最低。安全问题,和成本,并确保最终CAR-T细胞产品的功效。纳米注射-使用纳米针(NN)进行细胞内递送的过程-是一种新兴的物理递送途径,可有效地协商许多细胞类型的质膜,包括原代人类T细胞。它以最小的扰动发生,侵入性,和毒性,在高空间和时间分辨率下具有高效率和吞吐量。纳米注射有望大大改善广泛的治疗性货物的递送,而对这些货物几乎没有或没有损害。纳米注射平台允许这些货物根据需要在细胞内空间中发挥作用。纳米注射平台的适应性现在在免疫调节方面带来了主要优势,机械传导,细胞状态采样(纳米活检),受控的细胞内询问,以及该帐户的主要焦点-细胞内递送及其在体外细胞工程中的应用。机械纳米注射通常对细胞膜施加直接的机械力,提供了一条直接的途径来改善NN的膜扰动以及随后将遗传货物运输到目标细胞类型(粘附或悬浮细胞)中。相比之下,通过将NN与电场耦合来控制电活性纳米注射,这是在纳米级激活电穿孔(EP)的新途径,可以显着降低施加给细胞的电压,从而最大程度地减少EP对细胞和货物的损伤。并克服了传统散装EP的许多局限性。纳米注射超越了单纯的技术;它是一种离体细胞工程的方法,提供了赋予细胞新的潜力,强大的功能,例如为未来的CAR-T细胞技术产生嵌合抗原受体(CAR)-T细胞。我们首先讨论神经网络器件的制造(第2节),然后深入研究纳米注射介导的细胞工程(第3节),纳米注射机制和接口方法(第4节),以及使用纳米注射产生功能性CAR-T细胞的新兴应用(第5节)。
    ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient\'s own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    紫杉醇,一种从红豆杉树皮中提取的稀有二萜,以其抗癌活性而闻名,并作为治疗癌症的主要药物。由于树皮中紫杉醇的含量异常低,在紫杉醇的生产中使用了一种消耗红豆杉资源的半合成方法,which,然而,无法满足不断升级的临床需求。近年来,研究人员在生产紫杉醇的异源生物合成和代谢工程方面取得了重大进展。本文全面综述了紫杉醇生产的进展,包括化学合成,异源生物合成,和细胞工程。深入介绍了紫杉醇的生物合成途径和转录调控机制,旨在为紫杉醇生物合成的进一步研究提供有价值的参考。
    Paclitaxel, a rare diterpene extracted from the bark of Chinese yew (Taxus chinensis), is renowned for its anti-cancer activity and serves as a primary drug for treating cancers. Due to the exceptionally low content of paclitaxel in the bark, a semi-synthetic method that depletes Chinese yew resources is used in the production of paclitaxel, which, however, fails to meet the escalating clinical demand. In recent years, researchers have achieved significant progress in heterologous biosynthesis and metabolic engineering for the production of paclitaxel. This article comprehensively reviews the advancements in paclitaxel production, encompassing chemical synthesis, heterologous biosynthesis, and cell engineering. It provides an in-depth introduction to the biosynthetic pathway and transcriptional regulation mechanisms of paclitaxel, aiming to provide a valuable reference for further research on paclitaxel biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类趋化因子受体8(CCR8)是癌症和自身免疫性疾病免疫治疗的有前途的药物靶标。基于单克隆抗体的CCR8靶向治疗显示对肿瘤生长的显著抑制。CCR8的抑制通过调节肿瘤驻留的调节性T细胞导致抗肿瘤免疫力和患者存活率的提高。近年来,针对CCR8的单克隆抗体药物开发成为研究热点,这也促进了抗体评价方法的进步。因此,我们构建了一种新型的工程化定制细胞系HEK293-cAMP-生物传感器-CCR8,结合CCR8和cAMP-生物传感器报告分子。它可用于检测抗CCR8抗体的功能,如特异性和生物学活性,除了检测抗体依赖性细胞介导的细胞毒性和抗体依赖性细胞吞噬作用。我们获得了一种新的CCR8mAb22H9,并成功地用HEK293-cAMP-生物传感器-CCR8验证了其生物学活性。我们的报告细胞系具有较高的敏感性和特异性,并且还提供了用于评估抗CCR8抗体功能的快速动力学检测平台。
    Human chemokine receptor 8 (CCR8) is a promising drug target for immunotherapy of cancer and autoimmune diseases. Monoclonal antibody-based CCR8 targeted treatment shows significant inhibition in tumor growth. The inhibition of CCR8 results in the improvement of antitumor immunity and patient survival rates by regulating tumor-resident regulatory T cells. Recently monoclonal antibody drug development targeting CCR8 has become a research hotspot, which also promotes the advancement of antibody evaluation methods. Therefore, we constructed a novel engineered customized cell line HEK293-cAMP-biosensor-CCR8 combined with CCR8 and a cAMP-biosensor reporter. It can be used for the detection of anti-CCR8 antibody functions like specificity and biological activity, in addition to the detection of antibody-dependent cell-mediated cytotoxicity and antibody-dependent-cellular-phagocytosis. We obtained a new CCR8 mAb 22H9 and successfully verified its biological activities with HEK293-cAMP-biosensor-CCR8. Our reporter cell line has high sensitivity and specificity, and also offers a rapid kinetic detection platform for evaluating anti-CCR8 antibody functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA速度是解开细胞反应轨迹的关键工具。几种方法,包括常微分方程和机器学习模型,已经被提出来解释速度。然而,这些方法的实用性受到基本假设的限制。在这项研究中,我们介绍SymVelo,有效集成高维和低维信息的双路径框架。严格的基准和广泛的研究表明,SymVelo能够推断发育器官的分化轨迹,分析基因对刺激的反应,揭示转录动力学。此外,SymVelo的适应性架构使定制能够在即将到来的研究中适应复杂的数据和多样化的模式,从而为推进我们对细胞行为的理解提供了一个有希望的途径。
    RNA velocity is a crucial tool for unraveling the trajectory of cellular responses. Several approaches, including ordinary differential equations and machine learning models, have been proposed to interpret velocity. However, the practicality of these methods is constrained by underlying assumptions. In this study, we introduce SymVelo, a dual-path framework that effectively integrates high- and low-dimensional information. Rigorous benchmarking and extensive studies demonstrate that SymVelo is capable of inferring differentiation trajectories in developing organs, analyzing gene responses to stimulation, and uncovering transcription dynamics. Moreover, the adaptable architecture of SymVelo enables customization to accommodate intricate data and diverse modalities in forthcoming research, thereby providing a promising avenue for advancing our understanding of cellular behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嵌合抗原受体T(CAR-T)细胞疗法被认为是一种有效的免疫疗法,并通过引发抗原特异性免疫反应在血液恶性肿瘤中取得了重大成功。然而,CAR-T细胞疗法对具有免疫抑制微环境的实体瘤的应答率仍然有限.联合工程策略正在推进克服免疫抑制障碍和增强抗肿瘤反应的方法。这里,我们设计了一种IL-2突变蛋白共工程CAR-T,用于改善CAR-T细胞对抗实体瘤和有效抑制实体瘤。我们为CAR-T细胞配备了共表达肿瘤抗原靶向的CAR和突变的人白细胞介素-2(IL-2m),在体外赋予增强的CAR-T细胞适应性,重塑免疫排斥的TME,增强实体肿瘤中的CAR-T浸润,改善肿瘤控制,无明显的全身毒性。总的来说,本主题展示了针对实体肿瘤的CAR-T细胞开发和优化的通用CAR-T细胞武装策略。
    Chimeric antigen receptor T (CAR-T) cell therapy is regarded as a potent immunotherapy and has made significant success in hematologic malignancies by eliciting antigen-specific immune responses. However, response rates of CAR-T cell therapy against solid tumors with immunosuppressive microenvironments remain limited. Co-engineering strategies are advancing methods to overcome immunosuppressive barriers and enhance antitumor responses. Here, we engineered an IL-2 mutein co-engineered CAR-T for the improvement of CAR-T cells against solid tumors and the efficient inhibition of solid tumors. We equipped the CAR-T cells with co-expressing both tumor antigen-targeted CAR and a mutated human interleukin-2 (IL-2m), conferring enhanced CAR-T cells fitness in vitro, reshaped immune-excluded TME, enhanced CAR-T infiltration in solid tumors, and improved tumor control without significant systemic toxicity. Overall, this subject demonstrates the universal CAR-T cells armed strategy for the development and optimization of CAR-T cells against solid tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    间充质干细胞(MSCs)在卒中梗死区经历大量的生存能力问题,限制了它们的治疗效果和临床翻译。梗死环境中高水平的致命活性氧自由基(ROS)和促炎细胞因子(PC)杀死移植的MSCs,而低水平的有益ROS和PC刺激并改善移植的MSCs的生存能力。基于细胞生物学中的内在刺激效应,我们建立了一个小胶质细胞启发的MSC生物工程系统,将有害的高水平ROS和PC转化为增强MSC治疗的活力增强剂。该系统是通过将代谢糖工程的MSC与小胶质细胞膜包被的纳米颗粒和抗氧化细胞外保护层进行生物正交武装来实现的。在这个系统中,细胞外ROS清除层和PC吸收层有效地缓冲了有害作用,并在单个MSC的水平上建立了适合移植的微环境。同时,梗死区的无生命环境在组织水平上转化为新的存活生态位,以促进愈合。在移植后7天,工程化的MSC实现了比天然MSC高5倍的活力,并且对于中风恢复表现出优异的治疗效果长达28天。这种活力增强的系统证明了加速MSC治疗的临床翻译和促进中风恢复的潜力。
    Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs\' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct\'s inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为血液的重要组成部分,血小板在止血和维持血管完整性中起关键作用,并积极参与炎症和免疫调节。天然血小板的独特生物学特性使其能够用作药物递送载体。各种技术的进步和集成,包括生物,化学,和物理化学方法,已经能够制备工程化血小板。血小板可作为药物递送平台与免疫疗法和趋化因子疗法组合以增强其治疗效果。本文就近年来未活化血小板在药物输送中的应用进展作一综述。全面总结了工程化血小板的构建策略,包括内部负载,表面改性,和基因工程技术。工程化血小板具有治疗心血管疾病的巨大潜力,癌症,和传染病。此外,讨论了创造具有天然活性的工程血小板的挑战和潜在考虑因素.
    As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号