cell engineering

细胞工程
  • 文章类型: Journal Article
    中国仓鼠卵巢(CHO)细胞,被广泛认为是工业重组蛋白生产的首选宿主系统,在开发药物方面发挥着至关重要的作用,包括抗癌疗法。然而,哺乳动物基于细胞的生物制药生产方法仍然受到细胞限制如有限的生长和低生产率的困扰。微小RNA-21(miR-21)对多种恶性肿瘤有重要影响,包括多形性胶质母细胞瘤(GBM)。然而,降低的生产力和生长速率与miR-21在CHO细胞中的过表达有关。当前的研究旨在使用CRISPR介导的精确整合到靶染色体(CRIS-PITCh)系统与Bxb1重组酶介导的盒交换(RMCE)结合表达环状miR-21诱饵(CM21D),构建重组CHO(rCHO)细胞。实施核糖核蛋白(RNP)递送方法,利用CRIS-PITCh技术将着陆区插入基因组。随后,然后使用RMCE/Bxb1系统将Bxb1attB两侧的CM21D盒体重新定位到集成的着陆垫中。这一策略将目标效率提高了1.7倍,脱靶效应下降。miR-21靶基因(Pdcd4和Atp11b)注意到在miR-21通过CM21D形成时表达的显著增加。按照CM21D的表达式,rCHO细胞的倍增时间显着减少,生长速率增加了1.3倍。进一步的分析表明,分泌型重组蛋白hrsACE2的产量增加,由2.06倍。因此,我们可以得出结论,海绵诱导的miR-21抑制可能导致生长速率增加,这可能与CHO细胞生产力增加有关.对于工业细胞系,包括CHO细胞,提高生产力至关重要。我们的研究结果表明,CM21D是一种吉祥的CHO工程方法。关键点:•CHO是生产工业治疗制造的理想宿主细胞系,miR-21在CHO细胞中下调,产生重组蛋白。•miR-21靶基因注意到在miR-21通过CM21D形成时表达的显著增加。此外,CM21D对miR-21的扩增提高了CHO细胞的生长速率。•在CM21D敲入后,表达重组hrs-ACE2蛋白的CHO细胞的生产率和生长速率增加。
    Chinese hamster ovary (CHO) cells, widely acknowledged as the preferred host system for industrial recombinant protein manufacturing, play a crucial role in developing pharmaceuticals, including anticancer therapeutics. Nevertheless, mammalian cell-based biopharmaceutical production methods are still beset by cellular constraints such as limited growth and poor productivity. MicroRNA-21 (miR-21) has a major impact on a variety of malignancies, including glioblastoma multiforme (GBM). However, reduced productivity and growth rate have been linked to miR-21 overexpression in CHO cells. The current study aimed to engineer a recombinant CHO (rCHO) cell using the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system coupled with the Bxb1 recombinase-mediated cassette exchange (RMCE) to express a circular miR-21 decoy (CM21D) with five bulged binding sites for miR-21 sponging. Implementing the ribonucleoprotein (RNP) delivery method, a landing pad was inserted into the genome utilizing the CRIS-PITCh technique. Subsequently, the CM21D cassette flanked by Bxb1 attB was then retargeted into the integrated landing pad using the RMCE/Bxb1 system. This strategy raised the targeting efficiency by 1.7-fold, and off-target effects were decreased. The miR-21 target genes (Pdcd4 and Atp11b) noticed a significant increase in expression upon the miR-21 sponging through CM21D. Following the expression of CM21D, rCHO cells showed a substantial decrease in doubling time and a 1.3-fold increase in growth rate. Further analysis showed an increased yield of hrsACE2, a secretory recombinant protein, by 2.06-fold. Hence, we can conclude that sponging-induced inhibition of miR-21 may lead to a growth rate increase that could be linked to increased CHO cell productivity. For industrial cell lines, including CHO cells, an increase in productivity is crucial. The results of our research indicate that CM21D is an auspicious CHO engineering approach. KEY POINTS: • CHO is an ideal host cell line for producing industrial therapeutics manufacturing, and miR-21 is downregulated in CHO cells, which produce recombinant proteins. • The miR-21 target genes noticed a significant increase in expression upon the miR-21 sponging through CM21D. Additionally, sponging of miR-21 by CM21D enhanced the growth rate of CHO cells. • Productivity and growth rate were increased in CHO cells expressing recombinant hrs-ACE2 protein after CM21D knocking in.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将外来货物有效且无毒地递送到细胞中是许多生物学研究和细胞工程工作流程中的关键步骤,这些工作流程应用于生物制造和基于细胞的治疗等领域。然而,有效的分子传递到细胞中涉及优化几个实验参数。在基于电穿孔的细胞内递送的情况下,有必要优化参数,如脉冲电压,持续时间,缓冲区类型,和货物浓度为每个独特的应用程序。这里,我们提出了制造和利用高通量多孔局部电穿孔装置(LEPD)的方案,该装置由基于深度学习的图像分析辅助,能够快速优化实验参数,从而将分子高效且无毒地递送到细胞中.本文提出的LEPD和优化工作流程与粘附和悬浮细胞类型以及不同的分子货物(DNA,RNA,和蛋白质)。该工作流程能够进行多重组合实验,并且可以适应需要体外递送的细胞工程应用。关键特征•高通量多孔局部化电穿孔装置(LEPD),其可以针对贴壁细胞和悬浮细胞类型进行优化。•允许复用实验结合定制的脉冲电压,持续时间,缓冲区类型,货物集中。•兼容各种分子货物,包括DNA,RNA,和蛋白质,增强细胞工程应用的多功能性。•与基于深度学习的图像分析集成,可快速优化实验参数。
    Efficient and nontoxic delivery of foreign cargo into cells is a critical step in many biological studies and cell engineering workflows with applications in areas such as biomanufacturing and cell-based therapeutics. However, effective molecular delivery into cells involves optimizing several experimental parameters. In the case of electroporation-based intracellular delivery, there is a need to optimize parameters like pulse voltage, duration, buffer type, and cargo concentration for each unique application. Here, we present the protocol for fabricating and utilizing a high-throughput multi-well localized electroporation device (LEPD) assisted by deep learning-based image analysis to enable rapid optimization of experimental parameters for efficient and nontoxic molecular delivery into cells. The LEPD and the optimization workflow presented herein are relevant to both adherent and suspended cell types and different molecular cargo (DNA, RNA, and proteins). The workflow enables multiplexed combinatorial experiments and can be adapted to cell engineering applications requiring in vitro delivery. Key features • A high-throughput multi-well localized electroporation device (LEPD) that can be optimized for both adherent and suspended cell types. • Allows for multiplexed experiments combined with tailored pulse voltage, duration, buffer type, and cargo concentration. • Compatible with various molecular cargoes, including DNA, RNA, and proteins, enhancing its versatility for cell engineering applications. • Integration with deep learning-based image analysis enables rapid optimization of experimental parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人多能干细胞衍生的心肌细胞(hPSC-CM)在心肌梗死(MI)后显示出巨大的心脏再生前景,但是他们的移植在大型动物MI模型中引起短暂性室性心动过速(VT),代表翻译的主要障碍。我们的研究小组先前报道过,这些心律失常起因于移植组织作为异位起搏器的局灶性机制;因此,我们假设,以显性阴性形式的起搏器离子通道HCN4(dnHCN4)工程化的hPSC-CM在移植后表现出降低的自律性和致心律失常风险.
    我们使用CRISPR/Cas9介导的基因编辑来创建转基因dnHCN4hPSC-CM,并通过膜片钳记录和光学作图在体外评估了它们的电生理行为。接下来,我们在猪MI模型中移植了WT和纯合dnHCN4hPSC-CM,并通过免疫组织化学比较了移植后结果,包括自发性心律失常的发生率和移植物结构.
    相对于野生型(WT)心肌细胞,体外dnHCN4hPSC-CM表现出显着降低的自动性和起搏器有趣电流(If)密度。用dnHCN4或WThPSC-CM移植后,所有受者心脏均显示透壁性梗塞瘢痕,该瘢痕被分散的人心肌岛部分再肌肉化。然而,与我们的假设相反,dnHCN4和WThPSC-CM受者均表现出频繁的室性心动过速(VT)发作.
    虽然起搏器离子通道HCN4的遗传沉默在体外抑制了hPSC-CM的自律性,这种干预不足以降低猪MI模型移植后的VT风险,这意味着更复杂的机制在体内是有效的。
    UNASSIGNED: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) show tremendous promise for cardiac regeneration following myocardial infarction (MI), but their transplantation gives rise to transient ventricular tachycardia (VT) in large-animal MI models, representing a major hurdle to translation. Our group previously reported that these arrhythmias arise from a focal mechanism whereby graft tissue functions as an ectopic pacemaker; therefore, we hypothesized that hPSC-CMs engineered with a dominant negative form of the pacemaker ion channel HCN4 (dnHCN4) would exhibit reduced automaticity and arrhythmogenic risk following transplantation.
    UNASSIGNED: We used CRISPR/Cas9-mediated gene-editing to create transgenic dnHCN4 hPSC-CMs, and their electrophysiological behavior was evaluated in vitro by patch-clamp recordings and optical mapping. Next, we transplanted WT and homozygous dnHCN4 hPSC-CMs in a pig MI model and compared post-transplantation outcomes including the incidence of spontaneous arrhythmias and graft structure by immunohistochemistry.
    UNASSIGNED: In vitro dnHCN4 hPSC-CMs exhibited significantly reduced automaticity and pacemaker funny current (I f ) density relative to wildtype (WT) cardiomyocytes. Following transplantation with either dnHCN4 or WT hPSC-CMs, all recipient hearts showed transmural infarct scar that was partially remuscularized by scattered islands of human myocardium. However, in contrast to our hypothesis, both dnHCN4 and WT hPSC-CM recipients exhibited frequent episodes of ventricular tachycardia (VT).
    UNASSIGNED: While genetic silencing of the pacemaker ion channel HCN4 suppresses the automaticity of hPSC-CMs in vitro, this intervention is insufficient to reduce VT risk post-transplantation in the pig MI model, implying more complex mechanism(s) are operational in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞命运可能是由一个共同的机制来调节的,而这台机器的部件还有待识别。在这里,我们报告了工程化细胞命运控制器NanogBiD的设计和测试,将SS18的BiD或BRG1相互作用域与Nanog融合。与在多种测试条件下无效的天然蛋白相比,NanogBiD有效地促进小鼠体细胞重编程。机制研究进一步表明,它通过募集预期的Brg/Brahma相关因子(BAF)复合物来调节染色质可及性并重组已知被规范Nanog占据的细胞状态特异性增强子,从而促进细胞命运的转变,导致包括Sall4,miR-302,Dppa5a和Sox15在内的多个基因的早熟激活。虽然我们还没有在其他物种中测试我们的方法,我们的发现表明,工程染色质调节剂可能提供了许多必要的工具,以工程细胞命运在细胞作为药物时代。
    Cell fate is likely regulated by a common machinery, while components of this machine remain to be identified. Here we report the design and testing of engineered cell fate controller NanogBiD, fusing BiD or BRG1 interacting domain of SS18 with Nanog. NanogBiD promotes mouse somatic cell reprogramming efficiently in contrast to the ineffective native protein under multiple testing conditions. Mechanistic studies further reveal that it facilitates cell fate transition by recruiting the intended Brg/Brahma-associated factor (BAF) complex to modulate chromatin accessibility and reorganize cell state specific enhancers known to be occupied by canonical Nanog, resulting in precocious activation of multiple genes including Sall4, miR-302, Dppa5a and Sox15 towards pluripotency. Although we have yet to test our approach in other species, our findings suggest that engineered chromatin regulators may provide much needed tools to engineer cell fate in the cells as drugs era.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一系列重组单克隆抗体(rMAb)已在治疗多种疾病中得到应用,跨越各种癌症和免疫系统疾病。中国仓鼠卵巢(CHO)细胞已成为生产这些rMAb的主要选择,因为它们的鲁棒性,易于转染,以及类似于人类细胞的翻译后修饰能力。可以进行瞬时转染和/或稳定表达以在CHO细胞中表达rMAb。为了增强CHO细胞中rMAb的产量,已经开发了多种方法,包含向量优化,中等配方,栽培参数,和细胞工程。这篇综述简洁地概述了这些方法,同时也解决了生产过程中遇到的挑战,如聚集和岩藻糖基化问题。
    A range of recombinant monoclonal antibodies (rMAbs) have found application in treating diverse diseases, spanning various cancers and immune system disorders. Chinese hamster ovary (CHO) cells have emerged as the predominant choice for producing these rMAbs due to their robustness, ease of transfection, and capacity for posttranslational modifications akin to those in human cells. Transient transfection and/or stable expression could be conducted to express rMAbs in CHO cells. To bolster the yield of rMAbs in CHO cells, a multitude of approaches have been developed, encompassing vector optimization, medium formulation, cultivation parameters, and cell engineering. This review succinctly outlines these methodologies when also addressing challenges encountered in the production process, such as issues with aggregation and fucosylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嵌合抗原受体(CAR)T细胞疗法在过去十年中被证明是癌症治疗的突破。对血液恶性肿瘤产生前所未有的效果。所有批准的CAR-T细胞产品,以及许多正在临床试验中评估的人,使用病毒载体将外源遗传物质部署到T细胞中产生。病毒载体在基因传递中具有长期的临床历史,因此进行了迭代优化,以提高其效率和安全性。尽管如此,它们半随机整合到宿主基因组中的能力使它们可能通过插入诱变和关键细胞基因的失调而致癌。CART细胞施用后的继发性癌症似乎是罕见的不良事件。然而,过去几年记录的几起案件引起了人们对这个问题的关注,到目前为止可能被低估了,考虑到相对较新的CART细胞疗法的部署。此外,在血液恶性肿瘤中获得的最初成功尚未在实体瘤中复制。现在很明显,需要进一步的增强才能使CAR-T细胞增加长期持久性,克服疲惫,应对免疫抑制肿瘤微环境。为了这个目标,各种基因组工程策略正在评估中,最依赖CRISPR/Cas9或其他基因编辑技术。这些方法很容易引入意想不到的,产物细胞中不可逆的基因组改变。在本文的第一部分,我们将讨论用于产生CAR-T细胞的病毒和非病毒方法,而在第二部分,我们将专注于基因编辑和非基因编辑T细胞工程,特别是在优势方面,局限性,和安全。最后,我们将批判性地分析不同的基因部署和基因组工程组合,描述具有卓越安全性的下一代CAR-T细胞生产策略。
    Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    工业中国仓鼠卵巢(CHO)细胞系所需的分泌水平可以挑战内质网(ER)稳态,错误折叠蛋白的积累引起的内质网压力可能是生物制造的瓶颈。未折叠的蛋白质反应(UPR)启动以恢复内质网应激的稳态,优化UPR可以提高CHO细胞产生治疗性蛋白。我们比较了分批补料生长,生产特点,和免疫球蛋白G1(IgG1)生产者对其亲本的转录组反应,非生产宿主细胞系。我们使用高通量RNA测序(RNASeq)和定量聚合酶链反应(qPCR)进行了差异基因表达分析,以研究补料分批培养过程中每个细胞系的ER应激反应。与宿主细胞系相比,IgG1生产者中的UPR被激活,我们对差异表达谱的分析表明,IgG1生产者中ATF6α靶mRNA的瞬时上调,建议UPRATF6部门的两个上游监管机构,ATF6β和WFS1是合理的工程目标。虽然ATF6β和WFS1都有负调控ATF6α的报道,这项研究表明,任一靶标的敲除在产生IgG1的CHO细胞系中引起不同的作用。ATF6β的稳定敲低降低了细胞生长而不降低滴度;然而,WFS1的敲低降低了滴度而不影响生长。通过qPCR测量的相对表达表明ATF6β和WFS1表达之间没有直接关系,但是一个池中WFS1的上调与ER伴侣mRNA的生长减少和上调相关。WFS1敲低对UPR激活和产物mRNA表达有负面影响,ATF6β的敲低特别是在补料分批中提高了UPR,从而提高了整体生产率。
    Secretion levels required of industrial Chinese hamster ovary (CHO) cell lines can challenge endoplasmic reticulum (ER) homeostasis, and ER stress caused by accumulation of misfolded proteins can be a bottleneck in biomanufacturing. The unfolded protein response (UPR) is initiated to restore homeostasis in response to ER stress, and optimization of the UPR can improve CHO cell production of therapeutic proteins. We compared the fed-batch growth, production characteristics, and transcriptomic response of an immunoglobulin G1 (IgG1) producer to its parental, non-producing host cell line. We conducted differential gene expression analysis using high throughput RNA sequencing (RNASeq) and quantitative polymerase chain reaction (qPCR) to study the ER stress response of each cell line during fed-batch culture. The UPR was activated in the IgG1 producer compared to the host cell line and our analysis of differential expression profiles indicated transient upregulation of ATF6α target mRNAs in the IgG1 producer, suggesting two upstream regulators of the ATF6 arm of the UPR, ATF6β and WFS1, are rational engineering targets. Although both ATF6β and WFS1 have been reported to negatively regulate ATF6α, this study shows knockdown of either target elicits different effects in an IgG1-producing CHO cell line. Stable knockdown of ATF6β decreased cell growth without decreasing titer; however, knockdown of WFS1 decreased titer without affecting growth. Relative expression measured by qPCR indicated no direct relationship between ATF6β and WFS1 expression, but upregulation of WFS1 in one pool was correlated with decreased growth and upregulation of ER chaperone mRNAs. While knockdown of WFS1 had negative impacts on UPR activation and product mRNA expression, knockdown of ATF6β improved the UPR specifically later in fed-batch leading to increased overall productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质O-连接的甘露糖(O-Man)糖基化是一种进化保守的翻译后修饰(PTM),其在胚胎发育过程中发挥重要的生物学作用。三个非冗余酶家族,POMT1/POMT2,TMTC1-4和TMEM260选择性地协调蛋白质O-Man糖基化在不同类型的跨膜蛋白上的起始,包括α-营养不良聚糖,钙黏着蛋白和丛蛋白受体。然而,缺乏对其底物特异性的系统研究,部分是由于O-Man糖基转移酶在细胞中的普遍表达,这排除了在蛋白质组范围内对途径特异性O-Man糖基化的分析。这里,我们在五种人类细胞系中应用了膜糖蛋白质组学的靶向工作流程,以广泛定位O-Man底物,并通过O-Man糖基转移酶基因的个体和组合敲除(KO)基因解构O-Man起始。我们建立了人类细胞文库,用于通过定量糖蛋白质组学分析单个O-Man起始途径的底物特异性。我们的结果鉴定了180个O-Man糖蛋白,证明了POMT1/POMT2途径的新蛋白质靶标,并表明TMTC1-4和TMEM260途径广泛靶向参与细胞-细胞和细胞-细胞外基质相互作用的质膜蛋白的不同Ig样蛋白质结构域。在Ig样折叠上鉴定O-Man增加了对结构域特异性O-Man糖基化的新兴概念的进一步了解,这为O-Man糖基化粘附分子和受体的功能研究打开了大门。
    Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在人类细胞中目击,细胞内通路和治疗货物运输,包括基因编辑工具(例如,CRISPR-Cas9和转座子),核酸(例如,DNA,mRNA和siRNA),肽,和蛋白质(例如,酶和抗体),被严格限制以确保健康的细胞功能和行为。该原理在用于离体免疫疗法的嵌合抗原受体(CAR)-T细胞的递送机制中示例。特别是,CAR-T细胞的临床成功通过治愈以前无法治愈的血癌建立了新的治疗标准.该方法涉及交付,通常通过使用电穿孔(EP)和慢病毒,治疗性CAR基因进入患者自己的T细胞,然后将其设计为表达靶向和对抗血液癌症的CAR。但关键的困难在于对这些细胞进行基因操纵,而不会造成不可逆转的损害或功能丧失,同时将制造的复杂性降至最低。安全问题,和成本,并确保最终CAR-T细胞产品的功效。纳米注射-使用纳米针(NN)进行细胞内递送的过程-是一种新兴的物理递送途径,可有效地协商许多细胞类型的质膜,包括原代人类T细胞。它以最小的扰动发生,侵入性,和毒性,在高空间和时间分辨率下具有高效率和吞吐量。纳米注射有望大大改善广泛的治疗性货物的递送,而对这些货物几乎没有或没有损害。纳米注射平台允许这些货物根据需要在细胞内空间中发挥作用。纳米注射平台的适应性现在在免疫调节方面带来了主要优势,机械传导,细胞状态采样(纳米活检),受控的细胞内询问,以及该帐户的主要焦点-细胞内递送及其在体外细胞工程中的应用。机械纳米注射通常对细胞膜施加直接的机械力,提供了一条直接的途径来改善NN的膜扰动以及随后将遗传货物运输到目标细胞类型(粘附或悬浮细胞)中。相比之下,通过将NN与电场耦合来控制电活性纳米注射,这是在纳米级激活电穿孔(EP)的新途径,可以显着降低施加给细胞的电压,从而最大程度地减少EP对细胞和货物的损伤。并克服了传统散装EP的许多局限性。纳米注射超越了单纯的技术;它是一种离体细胞工程的方法,提供了赋予细胞新的潜力,强大的功能,例如为未来的CAR-T细胞技术产生嵌合抗原受体(CAR)-T细胞。我们首先讨论神经网络器件的制造(第2节),然后深入研究纳米注射介导的细胞工程(第3节),纳米注射机制和接口方法(第4节),以及使用纳米注射产生功能性CAR-T细胞的新兴应用(第5节)。
    ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient\'s own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自然杀伤(NK)细胞具有很高的内在细胞毒能力,临床试验已经证明了其过继性癌症治疗的安全性和有效性。嵌合抗原受体(CAR)的表达增强NK细胞的靶特异性,这些细胞适用于从同种异体供体产生的“现成的”产品。这里,我们首次提出了一种创新的CARNK细胞工程方法,该方法采用了基于非病毒性睡美人(SB)转座子/转座酶的系统和最小化的DNA载体,称为小圆。SB修饰的外周血来源的原代NK细胞显示出高且稳定的CAR表达,并且比慢病毒载体更频繁地整合到“基因组安全港”中。重要的是,与未转染的NK细胞相比,SB产生的CARNK细胞表现出增强的细胞毒性。在异种移植白血病小鼠模型中,使用已建立的急性淋巴细胞白血病(ALL)细胞和患者来源的原代B-ALL样品作为体外和体内靶标,证实了强大的抗白血病潜力。我们的数据表明SB-转座子系统是一种有效的,高功能CARNK细胞的非病毒工程的安全和具有成本效益的方法,这可能适用于白血病以及许多其他恶性肿瘤的癌症免疫治疗。
    Natural killer (NK) cells have high intrinsic cytotoxic capacity, and clinical trials have demonstrated their safety and efficacy for adoptive cancer therapy. Expression of chimeric antigen receptors (CARs) enhances NK cell target specificity, with these cells applicable as off-the-shelf products generated from allogeneic donors. Here, we present for the first time an innovative approach for CAR NK cell engineering employing a non-viral Sleeping Beauty (SB) transposon/transposase-based system and minimized DNA vectors termed minicircles. SB-modified peripheral blood-derived primary NK cells displayed high and stable CAR expression and more frequent vector integration into genomic safe harbors than lentiviral vectors. Importantly, SB-generated CAR NK cells demonstrated enhanced cytotoxicity compared with non-transfected NK cells. A strong antileukemic potential was confirmed using established acute lymphocytic leukemia cells and patient-derived primary acute B cell leukemia and lymphoma samples as targets in vitro and in vivo in a xenograft leukemia mouse model. Our data suggest that the SB-transposon system is an efficient, safe, and cost-effective approach to non-viral engineering of highly functional CAR NK cells, which may be suitable for cancer immunotherapy of leukemia as well as many other malignancies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号