bHLH

BHLH
  • 文章类型: Journal Article
    镉(Cd)是一种对生物体剧毒的重金属。土壤Cd污染已成为世界范围内的严重问题,对作物生产和人类健康构成严重威胁。当植物被Cd毒害时,他们的生长发育受到抑制,叶绿体严重受损,呼吸和光合作用受到负面影响。因此,阐明植物对Cd耐受性的分子机制很重要。转录因子可以与特定的植物顺式作用基因结合。经常报道转录因子参与涉及植物生长和发育的各种信号通路。它们在抵抗环境压力因素中的作用,特别是Cd,不应该被低估。多个转录因子家族在调控植物对Cd胁迫的抗性中的作用已被广泛证明。在这次审查中,我们总结了五个主要的转录因子家族-WRKY,ERF,MYB,bHLH,和bZIP-in植物对Cd胁迫的抗性,为将来使用分子技术解决Cd污染问题提供有用的信息。
    Cadmium (Cd) is a heavy metal highly toxic to living organisms. Cd pollution of soils has become a serious problem worldwide, posing a severe threat to crop production and human health. When plants are poisoned by Cd, their growth and development are inhibited, chloroplasts are severely damaged, and respiration and photosynthesis are negatively affected. Therefore, elucidating the molecular mechanisms that underlie Cd tolerance in plants is important. Transcription factors can bind to specific plant cis-acting genes. Transcription factors are frequently reported to be involved in various signaling pathways involved in plant growth and development. Their role in the resistance to environmental stress factors, particularly Cd, should not be underestimated. The roles of several transcription factor families in the regulation of plant resistance to Cd stress have been widely demonstrated. In this review, we summarize the mechanisms of five major transcription factor families-WRKY, ERF, MYB, bHLH, and bZIP-in plant resistance to Cd stress to provide useful information for using molecular techniques to solve Cd pollution problems in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    碱性螺旋-环-螺旋(bHLH)转录因子家族是植物中的第二大转录因子家族。bHLH转录因子不仅普遍参与植物生长和代谢,包括光形态发生,光信号转导,和次生代谢,而且在植物对胁迫的反应中也起着重要作用。然而,尚未研究bHLHTFs在假骨菌种中的功能。假性骨病(Nevski)。Löve是小麦的多年生属。假骨菌主要分布在干旱/半干旱地区,表现出良好的耐旱性。在这项研究中,我们确定了152个PlbHLHTF在假牛病,可以分为15组。共线性分析表明,小麦中122个PlbHLH基因与wbHLH基因具有同源性,与拟南芥中的AtbHLH基因同源性较低。基于三个PEG浓度(0%,10%,和20%),筛选了10个上调基因和11个下调PlbHLH基因。其中,PlbHLH6、PlbHLH55和PlbHLH64为候选基因,可能是与发芽耐旱性反应相关的关键基因。它们已经被证明能够应对干旱,盐,氧化,热,和酵母中的重金属胁迫。本研究为深入研究Pse中PlbHLHs的生物学作用奠定了基础。libanotica,并发现了新的耐旱性候选基因,以增强小麦作物的遗传背景。
    在线版本包含补充材料,可在10.1007/s12298-024-01433-w获得。
    The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    花青素在颜色变化中起着至关重要的作用,并显着有助于观赏植物的经济价值。已对花青素生物合成中涉及的保守活化复合物MYB-bHLH-WD40(MBW;MYB:v-myb禽成髓细胞病病毒癌基因同源物;bHLH:碱性螺旋-环-螺旋蛋白;WD40:WD-重复蛋白)进行了深入研究,但是对抑制因子功能的研究有限。在这项研究中,我们表征了TgMYB4,一种R2R3-MYB转录阻遏物,在红色花瓣品种的花瓣着色过程中高度表达。与对照植物相比,过表达TgMYB4的烟草表现出白色或浅粉红色的花瓣,花色苷的积累较少。发现TgMYB4抑制花青素合成酶(TfANS1)和二氢-黄酮-4-还原酶(AtDFR)的转录,虽然它没有绑定到他们的推动者。此外,TgMYB4蛋白能够与MYB激活剂竞争结合到:bHLH蛋白,从而抑制活化剂MBW复合物的功能。这些发现表明,TgMYB4在花色素沉着过程中对花色苷合成的调节中起抑制作用。
    Anthocyanins play a paramount role in color variation and significantly contribute to the economic value of ornamental plants. The conserved activation complex MYB-bHLH-WD40 (MBW; MYB: v-myb avian myeloblastosis viral oncogene homolog; bHLH: basic helix-loop-helix protein; WD40:WD-repeat protein) involved in anthocyanin biosynthesis has been thoroughly researched, but there have been limited investigations into the function of repressor factors. In this study, we characterized TgMYB4, an R2R3-MYB transcriptional repressor which is highly expressed during petal coloration in red petal cultivars. TgMYB4-overexpressing tobaccos exhibited white or light pink petals with less anthocyanin accumulation compared to control plants. TgMYB4 was found to inhibit the transcription of ANTHOCYANIDIN SYNTHASE (TfANS1) and DIHYDRO-FLAVONOL-4-REDUCTASE (AtDFR), although it did not bind to their promoters. Moreover, the TgMYB4 protein was able to compete with the MYB activator to bind to the :bHLHprotein, thereby suppressing the function of the activator MBW complex. These findings demonstrate that TgMYB4 plays a suppressive role in the regulation of anthocyanin synthesis during flower pigmentation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:甜樱桃PavbHLH106在低温诱导下表达上调,并通过增加抗氧化酶活性介导清除ROS来增强烟草的抗寒性。甜樱桃(PrunusaviumL.)是一种重要的经济水果。在休眠期间,冷却要求至关重要,但异常低温不利于果实的生长发育。在盐下PavbHLH106的转录水平存在差异,脱水,和低温处理,尤其是对寒冷压力的反应,这表明该基因参与了不同非生物胁迫的调控。PavbHLH106与拟南芥AtbHLH106同源,具有保守的bHLH结构域,在烟草中的瞬时表达表明该蛋白质位于细胞核中,并在酵母中具有转录活性。烟草中的PavbHLH106过表达导致电解质泄漏较弱,降低丙二醛,在低温处理下脯氨酸含量高于野生型。在过表达的品系中,活性氧的积累显着减少,与抗氧化酶活性呈负相关。此外,过表达PavbHLH106可延缓烟草种子的萌发,促进植物生长。与野生型相比,抗性相关基因在过表达的植物中表达更多。PavbHLH106与酵母中的PavACO启动子结合,并可能与bHLH162样转录因子相互作用。这些结果表明PavbHLH106具有各种功能,并且在控制低温胁迫方面特别活跃。
    CONCLUSIONS: Sweet cherry PavbHLH106 was up-regulated under cold induction and overexpressed to enhance the cold resistance in tobacco by mediating the scavenging of ROS through increasing of antioxidant enzyme activity. Sweet cherry (Prunus avium L.) is an economically important fruit. Chilling requirements are critical during dormancy, but abnormally low temperatures unfavorably affect fruit growth and development. Differences were found in the transcript level of PavbHLH106 under salt, dehydration, and low-temperature treatments, especially in response to cold stress, suggesting that this gene is involved in the regulation of different abiotic stresses. PavbHLH106 is homologous to Arabidopsis thaliana AtbHLH106 with a conserved bHLH domain, and transient expression in tobacco suggests that the protein is localized in the nucleus and has transcriptional activity in yeast. The PavbHLH106 overexpression in tobacco resulted in weaker electrolyte leakages, lower malondialdehyde, and higher proline content than the wild type at low-temperature treatment. Reactive oxygen species accumulation was significantly reduced in the overexpressed lines, negatively correlated with the antioxidant enzyme activity. In addition, overexpression of PavbHLH106 delayed the germination of tobacco seeds and promoted plant growth. Resistance-related genes were expressed more in the overexpressed plants compared to the wild type. PavbHLH106 bound to the PavACO promoter in yeast and potentially interacted with a bHLH162-like transcription factor. These results indicate that PavbHLH106 has various functions and is particularly active in controlling low-temperature stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    绒毡层,一个关键的最内层,包括花药壁内的男性生殖细胞,在正常的花粉发育中起着举足轻重的作用。转录因子(TFs)bHLH010/089/091冗余地促进了功能失调的TAPETum1的快速核积累,该TF是绒毡层中的看门人TF。然而,控制bHLH010/089/091活性的监管机制仍然未知。在这项研究中,我们发现咖啡酰辅酶AO-甲基转移酶1(CCoAOMT1)是一种负调节因子,可能通过其K259位点影响bHLH010和bHLH089的核定位和功能。我们的发现强调了CCoAOMT1促进了bHLH010和bHLH089的核出口和降解。有趣的是,CCoAOMT1表达升高导致花粉发育缺陷,反映在bhlh010bhlh089突变体中观察到的表型。此外,我们的调查显示,bHLH089蛋白中的K259A突变破坏了其从细胞核到细胞质的易位,并阻碍了CCoAOMT1诱导的降解.重要的是,具有probHLH089::bHLH089K259A构建体的转基因植物未能挽救bhlh010bhlh089突变体中的适当花粉发育或基因表达。总的来说,这些发现强调了维持男性生育力平衡TF稳态的必要性.他们牢固地确立了CCoAOMT1作为关键调节因子,有助于在绒毡层转录网络的诱导和确保适当的花药发育之间实现平衡。
    The tapetum, a crucial innermost layer encompassing male reproductive cells within the anther wall, plays a pivotal role in normal pollen development. The transcription factors (TFs) bHLH010/089/091 redundantly facilitate the rapid nuclear accumulation of DYSFUNCTIONAL TAPETUM 1, a gatekeeper TF in the tapetum. Nevertheless, the regulatory mechanisms governing the activity of bHLH010/089/091 remain unknown. In this study, we reveal that caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) is a negative regulator affecting the nuclear localization and function of bHLH010 and bHLH089, probably through their K259 site. Our findings underscore that CCoAOMT1 promotes the nuclear export and degradation of bHLH010 and bHLH089. Intriguingly, elevated CCoAOMT1 expression resulted in defective pollen development, mirroring the phenotype observed in bhlh010 bhlh089 mutants. Moreover, our investigation revealed that the K259A mutation in the bHLH089 protein disrupted its translocation from the nucleus to the cytosol and impeded its degradation induced by CCoAOMT1. Importantly, transgenic plants with the probHLH089::bHLH089K259A construct failed to rescue proper pollen development or gene expression in bhlh010 bhlh089 mutants. Collectively, these findings emphasize the need to maintain balanced TF homeostasis for male fertility. They firmly establish CCoAOMT1 as a pivotal regulator that is instrumental in achieving equilibrium between the induction of the tapetum transcriptional network and ensuring appropriate anther development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碱性/螺旋-环-螺旋(bHLH)家族是植物转录因子的主要家族。尽管有报道称bHLH在植物中对病原体感染具有防御作用,目前还没有关于玫瑰bHLH相关防御反应的全面研究(Rosasp.).在这项研究中,对玫瑰中的bHLH家族基因(RcbHLHs)进行了全基因组分析,包括它们的系统发育关系,基因结构,染色体定位和共线性分析。通过系统发育分析,将玫瑰基因组中的121个RcbHLH基因分为21个亚组.这些RcbHLH在玫瑰的所有7条染色体中分布不均匀。基因复制事件的发生表明全基因组复制和节段复制可能在基因复制中起关键作用。非同义突变频率与同义突变频率比值(Ka/Ks)分析表明,复制的RcbHLH基因主要经过纯化选择,它们的功能分化是有限的。基因表达分析表明,46个RcbHLHs在灰芽孢杆菌感染后的玫瑰花瓣中差异表达。据推测,这些RcbHLH是调节玫瑰植物对灰芽孢杆菌感染的应答的候选基因。病毒诱导的基因沉默(VIGS)证实,玫瑰中的RcbHLH112是灰芽孢杆菌感染的易感因素。本研究为进一步研究玫瑰bHLH基因家族的功能提供了有用的信息。
    The basic/helix-loop-helix (bHLH) family is a major family of transcription factors in plants. Although it has been reported that bHLH plays a defensive role against pathogen infection in plants, there is no comprehensive study on the bHLH-related defence response in rose (Rosa sp.). In this study, a genome-wide analysis of bHLH family genes (RcbHLHs) in rose was carried out, including their phylogenetic relationships, gene structure, chromosome localization and collinearity analysis. Via phylogenetic analysis, a total of 121 RcbHLH genes in the rose genome were divided into 21 sub-groups. These RcbHLHs are unevenly distributed in all 7 chromosomes of rose. The occurrence of gene duplication events indicates that whole-genome duplication and segmental duplication may play a key role in gene duplication. Ratios of non-synonymous to synonymous mutation frequency (Ka/Ks) analysis showed that the replicated RcbHLH genes mainly underwent purification selection, and their functional differentiation was limited. Gene expression analysis showed that 46 RcbHLHs were differentially expressed in rose petals upon B. cinerea infection. It is speculated that these RcbHLHs are candidate genes that regulate the response of rose plants to B. cinerea infection. Virus-induced gene silencing (VIGS) confirmed that RcbHLH112 in rose is a susceptibility factor for infection with B. cinerea. This study provides useful information for further study of the functions of the rose bHLH gene family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    碱性螺旋-环-螺旋(bHLH)转录因子具有DNA结合和二聚化结构域,参与各种生物和生理过程,比如成长和发展,次级代谢产物的调节,和应激反应。然而,目前尚未对C.tinctorius中的bHLH基因家族进行研究。在这项研究中,我们进行了一个全基因组鉴定和分析的bHLH转录因子。共鉴定出120个CtbHLH基因,分布在所有12条染色体上,并根据系统发育关系分为24个亚科。此外,对120个CtbHLH基因进行了全面分析,包括蛋白质序列比对,进化评估,主题预测,以及启动子顺式作用元件的分析。启动子区分析表明,CtbHLH基因包含顺式作用元件,与植物生长和发育的各个方面有关。对植物激素的反应,以及对非生物和生物胁迫的反应。表达式配置文件,来自转录组数据库,表明这些CtbHLH基因之间有不同的表达模式,似乎是组织特异性的或特定于某些品种的。为了进一步探索它们的功能,我们确定了15个CtbHLH基因的表达水平,这些基因具有与非生物和激素反应相关的基序。这项调查包括用ABA治疗,盐,干旱,还有MeJA.结果表明,响应这些非生物和激素处理,CtbHLH基因的表达模式存在很大差异。总之,本研究为今后探讨CtbHLH基因家族的作用和调控机制奠定了坚实的基础.
    The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    bHLH家族,作为转录因子(TFs)的超家族,在植物中具有特殊的功能特性,在植物的生长发育中起着至关重要的作用,并帮助植物应对各种胁迫。在这项研究中,在桦树中筛选了128个bHLH家族基因(B.桔梗)基因组使用保守域扫描和blast分析。这些基因根据系统发育树的构建分为21个亚家族,并且在14个桦树染色体中分布不均。总之,鉴定出具有27个BpbHLH基因的22个分段重复对。重复分布在八个染色体上。对基因结构和蛋白质基序的分析揭示了BpbHLHs的组内保守性。在BpbHLH家族基因中,16每个仅含有一个内含子。BPCrh14G06667基因含有最多的内含子,也就是说,19.顺式元素,对植物激素有反应,光,防御,和压力,在BHLH家族基因的启动子上发现。根据RNA-seq数据分析,在PEG渗透胁迫下,大多数BpbHLH基因差异表达,和八个高度差异表达。qRT-PCR分析结果进一步表明BPCrh06G09475是叶片中表达量最高的基因,根,和茎,与对照组相比,这八个基因在叶片中的表达高于根和茎中的表达,并且在渗透胁迫下在所有三个组织中的表达均上调。以上分析表明,BpbHLH家族基因在干旱胁迫下具有一定的生物学效应,为桦树抗逆性的分子育种提供了依据。
    The bHLH family, as a superfamily of transcription factors (TFs), has special functional characteristics in plants and plays a crucial role in a plant\'s growth and development and helping the plant cope with various stresses. In this study, 128 bHLH family genes were screened in the birch (B. platyphylla) genome using conservative domain scan and blast analysis. These genes are clustered into 21 subfamilies based on the phylogenetic tree construction and are unevenly distributed among the 14 birch chromosomes. In all, 22 segmental duplication pairs with 27 BpbHLH genes were identified. The duplications were distributed on eight chromosomes. Analysis of gene structures and protein motifs revealed intra-group conservation of BpbHLHs. Of the BpbHLH family genes, 16 contain only one intron each. The BPChr14G06667 gene contains the most introns, that is, 19. The cis-elements, which respond to plant hormones, light, defense, and stress, were found on the promoter of BHLH family genes. As per RNA-seq data analysis, under PEG osmotic stress, most BpbHLH genes were differentially expressed, and eight were highly differentially expressed. The qRT-PCR analysis results further indicated that BPChr06G09475 was the gene with the highest expression level in leaves, roots, and stems, and that the expression of these eight genes was higher in leaves than in roots and stems and upregulated in all three tissues under osmotic stress compared to the controls. The above analysis suggests that the BpbHLH family genes have a certain biological effect under drought stress that provides a basis for molecular breeding for stress resistance in birch.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    向日葵是著名的观赏植物,而带有红色花冠的向日葵很少见,红色着色的机制尚不清楚。这里,对类黄酮途径的代谢组学和转录组学进行了综合分析,以研究红色向日葵Pc103和两个黄色向日葵(Yr17和Y35)之间差异颜色形成的分子机制。有针对性的代谢组学分析显示,与黄色品种相比,Pc103中的花色苷含量较高,但黄酮醇含量较低。RNA测序和系统发育分析确定了参与类黄酮途径的多个基因,包括一系列结构基因和三个MYB和bHLH基因。具体来说,HaMYBA和HabHLH1在Pc103中表达上调,而HaMYBF表达降低。发现HaMYBA在体内和体外与HabHLH1相互作用,而HaMYBF没有。瞬时表达分析进一步显示,HabHLH1和HaMYBA协同调节二氢苯胺4-还原酶(DFR)的表达增加,导致花青素积累。另一方面,HaMYBF的异位表达独立调节黄酮醇合酶(FLS)的表达,但阻碍了花青素的生产。总的来说,我们的研究结果表明,HaMYBA和HabHLH1的上调以及HaMYBF的下调,有助于Pc103中的红色着色。为通过基因工程改良向日葵色泽提供了理论依据。
    Sunflowers are well-known ornamental plants, while sunflowers with red corolla are rare and the mechanisms underlying red coloration remain unclear. Here, a comprehensive analysis of metabolomics and transcriptomics on flavonoid pathway was performed to investigate the molecular mechanisms underlying the differential color formation between red sunflower Pc103 and two yellow sunflowers (Yr17 and Y35). Targeted metabolomic analysis revealed higher anthocyanin levels but lower flavonol content in Pc103 compared to the yellow cultivars. RNA-sequencing and phylogenetic analysis identified multiple genes involved in the flavonoid pathway, including series of structural genes and three MYB and bHLH genes. Specifically, HaMYBA and HabHLH1 were up-regulated in Pc103, whereas HaMYBF exhibited reduced expression. HaMYBA was found to interact with HabHLH1 in vivo and in vitro, while HaMYBF does not. Transient expression analysis further revealed that HabHLH1 and HaMYBA cooperatively regulate increased expression of dihydroflavonol 4-reductase (DFR), leading to anthocyanin accumulation. On the other hand, ectopic expression of HaMYBF independently modulates flavonol synthase (FLS) expression, but hindered anthocyanin production. Collectively, our findings suggest that the up-regulation of HaMYBA and HabHLH1, as well as the down-regulation of HaMYBF, contribute to the red coloration in Pc103. It offers a theoretical basis for improving sunflower color through genetic engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    当共生关系被破坏时,根毛被认为是像冷杉这样的菌根植物的关键互补生存策略。对于强烈依赖菌根共生的植物物种中根毛形态发生的机制知之甚少。这些物种中的许多都濒临灭绝,这些知识对于确保他们的生存至关重要。这里,MYB6/bHLH13-蔗糖合成酶2(AbSUS2)模块是新鉴定和表征在A.beshanzuensis使用生物信息学,组织化学,分子生物学,和转基因。Functional,表达模式,和定位分析表明,AbSUS2参与了蔗糖的合成,并参与了A.beshanzuensis的根毛萌生。此外,发现AbSUS2的主要酶产物在体外抑制根毛引发。我们的数据进一步表明,涉及转录因子AbMYB6和AbbHLH13的复合物与AbSUS2的启动子直接相互作用并增强其表达,从而抑制根毛对外源蔗糖的反应。我们的发现为根毛形态发生在菌根植物中的调控提供了新的见解,也为保护濒危菌根植物物种提供了新策略。
    Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号