关键词: Drought stress Pseudoroegneria Seed germination Transcription factor bHLH

来  源:   DOI:10.1007/s12298-024-01433-w   PDF(Pubmed)

Abstract:
The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops.
UNASSIGNED: The online version contains supplementary material available at 10.1007/s12298-024-01433-w.
摘要:
碱性螺旋-环-螺旋(bHLH)转录因子家族是植物中的第二大转录因子家族。bHLH转录因子不仅普遍参与植物生长和代谢,包括光形态发生,光信号转导,和次生代谢,而且在植物对胁迫的反应中也起着重要作用。然而,尚未研究bHLHTFs在假骨菌种中的功能。假性骨病(Nevski)。Löve是小麦的多年生属。假骨菌主要分布在干旱/半干旱地区,表现出良好的耐旱性。在这项研究中,我们确定了152个PlbHLHTF在假牛病,可以分为15组。共线性分析表明,小麦中122个PlbHLH基因与wbHLH基因具有同源性,与拟南芥中的AtbHLH基因同源性较低。基于三个PEG浓度(0%,10%,和20%),筛选了10个上调基因和11个下调PlbHLH基因。其中,PlbHLH6、PlbHLH55和PlbHLH64为候选基因,可能是与发芽耐旱性反应相关的关键基因。它们已经被证明能够应对干旱,盐,氧化,热,和酵母中的重金属胁迫。本研究为深入研究Pse中PlbHLHs的生物学作用奠定了基础。libanotica,并发现了新的耐旱性候选基因,以增强小麦作物的遗传背景。
在线版本包含补充材料,可在10.1007/s12298-024-01433-w获得。
公众号