axon initial segment

轴突初始段
  • 文章类型: Journal Article
    稳态可塑性维持功能性脑网络的稳定性。轴突初始部分(AIS),动作电位开始的地方,进行动态调整,以响应网络活动变化而对神经元放电特性施加强大的控制。然而,尚不清楚这种可塑性是否涉及对AIS的直接突触输入。这里,我们表明,从枝形灯细胞(ChCs)的GABA能突触输入的变化驱动了前边缘(PL)区域主要神经元(PNs)的AIS的稳态调节,而来自小白蛋白阳性篮状细胞的细胞则没有。这种调谐在AIS形态中很明显,电压门控钠通道表达,和PN兴奋性。此外,这种稳态可塑性的影响可以反映在动物行为中。社会行为,与PLPN活动成反比,显示与时间相关的变化与AIS可塑性和PN兴奋性的变化紧密相关。因此,PN中AIS起源的稳态可塑性可能会抵消细胞和行为水平上ChC突触前输入不平衡引起的缺陷。
    Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轴突初始片段(AIS)是动作电位启动的神经元最容易兴奋的亚细胞域。皮质投射神经元(PNs)的AIS主要从枝形吊灯细胞(ChCs)接收GABA能突触输入,它们被认为调节动作电位的产生并调节神经元的兴奋性。由于单个ChC经常支配数百个PN,它们可能会改变PN集合的活动,甚至影响整个神经网络。在出生后发育过程中或响应网络活动的变化,AIS和轴突突触经历动态的结构和功能变化,精致,和皮质微电路的适应。在这里,我们简要介绍了ChCs的历史,并回顾了采用现代遗传和分子工具的最新研究进展。特别注意将归因于AIS和ChC-PN连接的可塑性,在生理和病理条件下对动态网络的塑造起着举足轻重的作用。
    Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    轴突初始节段(AIS)是动作电位产生和神经元极性所需的专门神经元区室。然而,理解调节AIS结构和功能的机制受到对其分子组成的不完全了解的阻碍。这里,使用免疫邻近生物素化,我们进一步定义了AIS蛋白质组及其在神经元成熟过程中的动态变化。在鉴定出的许多AIS蛋白中,我们表明SCRIB在体外和体内都高度富集在AIS中,并表现出周期性结构,如基于轴突光谱的细胞骨架。我们发现,ankyrinG与SCRIB相互作用,并将SCRIB招募到AIS。然而,SCRIB的损失对AnkyrinG没有影响。这种强大而灵活的方法进一步定义了AIS蛋白质组,并提供了丰富的资源来阐明调节AIS结构和功能的机制。
    The axon initial segment (AIS) is a specialized neuronal compartment required for action potential generation and neuronal polarity. However, understanding the mechanisms regulating AIS structure and function has been hindered by an incomplete knowledge of its molecular composition. Here, using immuno-proximity biotinylation we further define the AIS proteome and its dynamic changes during neuronal maturation. Among the many AIS proteins identified, we show that SCRIB is highly enriched in the AIS both in vitro and in vivo, and exhibits a periodic architecture like the axonal spectrin-based cytoskeleton. We find that ankyrinG interacts with and recruits SCRIB to the AIS. However, loss of SCRIB has no effect on ankyrinG. This powerful and flexible approach further defines the AIS proteome and provides a rich resource to elucidate the mechanisms regulating AIS structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在tau病变的情况下,如阿尔茨海默病(AD),高度可溶性和天然未折叠的tau聚合成不溶性长丝;然而,这一过程的机械细节仍不清楚。在AD患者的大脑中,只有一小部分tau形成β-螺旋堆叠的原丝,而其侧翼区域形成无序的模糊涂层。这里,已证明tauAD成核核(tau-AC)充分诱导了自聚集并将全长tau募集到细丝上。出乎意料的是,tau-AC的磷酸模拟形式(在Ser324或Ser356处)显示显著降低的低聚化和接种倾向。生物物理分析表明,tau-AC的N端促进了作为成核基序的纤维化动力学,通过磷酸化诱导的tau-AC构象变化而被空间屏蔽。Tau-AC寡聚体通过胞吞作用和诱导的内源性tau聚集有效地内化到细胞中。在初级海马神经元中,tau-AC在慢性去极化时损害了轴突初始节段的可塑性,并被误定位到了体树突区室。此外,观察到海马内注射tau-AC原纤维的小鼠记忆恢复显着受损,这对应于大脑中的神经病理学染色和神经元丢失。这些发现确定tau-AC物种是AD的关键神经病理学驱动因素,提出新的治疗干预策略。
    In tauopathy conditions, such as Alzheimer\'s disease (AD), highly soluble and natively unfolded tau polymerizes into an insoluble filament; however, the mechanistic details of this process remain unclear. In the brains of AD patients, only a minor segment of tau forms β-helix-stacked protofilaments, while its flanking regions form disordered fuzzy coats. Here, it is demonstrated that the tau AD nucleation core (tau-AC) sufficiently induced self-aggregation and recruited full-length tau to filaments. Unexpectedly, phospho-mimetic forms of tau-AC (at Ser324 or Ser356) show markedly reduced oligomerization and seeding propensities. Biophysical analysis reveal that the N-terminus of tau-AC facilitates the fibrillization kinetics as a nucleation motif, which becomes sterically shielded through phosphorylation-induced conformational changes in tau-AC. Tau-AC oligomers are efficiently internalized into cells via endocytosis and induced endogenous tau aggregation. In primary hippocampal neurons, tau-AC impaired axon initial segment plasticity upon chronic depolarization and is mislocalized to the somatodendritic compartments. Furthermore, it is observed significantly impaired memory retrieval in mice intrahippocampally injected with tau-AC fibrils, which corresponds to the neuropathological staining and neuronal loss in the brain. These findings identify tau-AC species as a key neuropathological driver in AD, suggesting novel strategies for therapeutic intervention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轴突初始段(AIS)是一个高度专业化的轴突区室,在那里启动动作电位。AIS的异质性已被认为发生在中间神经元和锥体神经元(PyNs)之间,这可能有助于它们独特的尖峰特性。然而,AIS的各种特征是否可以与特定的PyN亚型相关联仍然未知。这里,我们报告说,在小鼠的前边缘皮层(PL),两种类型的PyN轴突投射到对侧PL或同侧基底外侧杏仁核,具有由形态学反映的不同的AIS特性,离子通道表达式,动作电位启动,和枝形吊灯细胞的轴突突触输入。此外,特定于投影的AIS多样性在表层比在深层更为突出。因此,我们的研究揭示了PyNAIS的皮质层和轴突投影特异性异质性,这可以赋予各种PyN类型的尖峰以精致的调制。
    The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轴突初始片段(AIS)具有特征性的密集聚集的电压门控钠通道(Nav),细胞粘附分子Neurofascin186(Nfasc),神经元支架蛋白Ankyrin-G(AnkG),这有利于动作电位的产生和轴突极性的维持。然而,AIS装配的基础机制,维护,和可塑性仍然知之甚少。这里,我们报告了AnkG锚蛋白重复序列(ANK重复序列)结构域的高分辨率晶体结构,其结合位点在Nfasc细胞质尾部,结合使用连续截断变体的结合亲和力测定,AnkG-Nfasc结合的分子基础。我们确认AnkG与Nfasc中的FIGQY基序相互作用,我们确定了它们的高亲和力结合所需的另一个区域。我们的结构分析表明,ANK重复序列在AnkG内沟中形成4个疏水或亲水层,与必需的Nfasc残基协调相互作用,包括F1202、E1204和Y1212。此外,我们显示AnkG-Nfasc复合物的破坏消除了培养的小鼠海马神经元在AIS的Nfasc富集。最后,我们的结构和生化分析表明L1CAM中L1综合征相关突变,L1免疫球蛋白家族蛋白的成员,包括Nfasc,L1CAM,NrCAM,和CHL1,损害与锚蛋白的结合。一起来看,这些结果定义了AnkG-Nfasc复合物形成的潜在机制,并表明Nfasc的AnkG依赖聚类是AIS完整性所必需的。
    The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG-Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG-Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG-Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Action potentials (APs) in neurons are generated at the axon initial segment (AIS). AP dynamics, including initiation and propagation, are intimately associated with neuronal excitability and neurotransmitter release kinetics. Most learning and memory studies at the single-neuron level have relied on the use of animal models, most notably rodents. Here, we studied AP initiation and propagation in cultured hippocampal neurons from Sprague-Dawley (SD) rats and C57BL/6 (C57) mice with genetically encoded voltage indicator (GEVI)-based voltage imaging. Our data showed that APs traveled bidirectionally in neurons from both species; forward-propagating APs (fpAPs) had a different speed than backpropagating APs (bpAPs). Additionally, we observed distinct AP propagation characteristics in AISs emerging from the somatic envelope compared to those originating from dendrites. Compared with rat neurons, mouse neurons exhibited higher bpAP speed and lower fpAP speed, more distally located ankyrin G (AnkG) in AISs, and longer Nav1.2 lengths in AISs. Moreover, during AIS plasticity, AnkG and Nav1.2 showed distal shifts in location and shorter lengths of labeled AISs in rat neurons; in mouse neurons, however, they showed a longer AnkG-labeled length and more distal Nav1.2 location. Our findings suggest that hippocampal neurons in SD rats and C57 mice may have different AP propagation speeds, different AnkG and Nav1.2 patterns in the AIS, and different AIS plasticity properties, indicating that comparisons between these species must be carefully considered.
    动作电位产生于神经元的轴突起始节(Axon initial segment , AIS),动作电位的爆发与传播,与神经元兴奋性以及神经递质释放密切相关。神经元水平的学习和记忆研究依赖于许多动物模型的使用,尤其是啮齿类动物。该文中,我们利用基于遗传编码电压指示器的电压成像技术,研究动作电位在Sprague-Dawley(SD)大鼠和C57BL/6(C57)小鼠海马神经元中的爆发和传播。我们的实验数据显示,在两种物种的神经元中动作电位都是双向传播的,其中,沿轴突向下传播动作电位与向胞体往回传播动作电位的速度不同,且树突起源和胞体起源的AIS上动作电位的传播有其独特的性质。与大鼠相比,小鼠神经元表现出较高的回传动作电位速度和较低的下传动作电位速度,锚蛋白G (AnkG)在小鼠神经元的AIS上偏向于远端定位,Nav1.2在小鼠神经元AIS上呈现出较长的分布。此外,AIS可塑性发生时,大鼠神经元AIS上AnkG和Nav1.2的位置都向远端偏移,且长度均变短;而小鼠神经元的AIS却呈现出变长的AnkG和向远端定位的Nav1.2。综上,我们的研究结果表明,大鼠和小鼠的海马神经元可能在动作电位传播速度、AIS上AnkG和Nav1.2分布的模式以及AIS可塑性特性等方面都存在差异,对这两个物种的实验结果进行比较时需要要考虑到上述情况。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    不同于抑制性中间神经元的其他亚型,枝形吊灯或轴突细胞仅在靶向锥体细胞(PC)的轴突初始部分(AIS)上形成去极化GABA能突触。然而,这些AIS-GABA能输入是否在神经元加工中产生兴奋或抑制的争论尚未解决。使用真实的神经元建模和皮质层5PCs的电生理记录,我们定量地证明了AIS-GABA能输入的开始时间,相对于树突状兴奋性谷氨酸能输入,决定了其对PC中突触整合和尖峰生成功效的双向调节。更具体地说,AIS-GABA能输入在谷氨酸能输入之前>15ms时,可促进电压激活的Na通道对总突触激发的增强作用,而对于几乎同时发生的兴奋性输入,它们主要在AIS产生分流抑制。因此,我们的发现提供了一种整合机制,通过该机制,AIS靶向中间神经元对靶向PC的输入输出功能进行复杂的调节.
    Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轴突起始段(AIS)在维持神经元极性和启动动作电位(AP)中起重要作用。AIS通过改变其长度和与细胞体的距离来适应环境,导致神经元兴奋性的调节,这被称为AIS可塑性。以前的研究发现,关键AIS成分ankyrinG(AnkG)的单周期分布为~200nm,导航1.2和βIV-血影蛋白,虽然目前尚不清楚AIS可塑性如何改变晶格结构。在这项研究中,我们发现AIS的长度显著增加,导致神经元兴奋性增加,用高浓度葡萄糖治疗。晶格结构的结构照明显微镜(SIM)图像显示AnkG的双间距周期性分布(〜200nm和〜260nm),Nav1.2和βIV-血影蛋白。此外,480kDaAnkG对于AIS可塑性和增加晶格结构间距至关重要。发现用于调节AIS可塑性的新调节剂将有助于我们理解和操纵AIS的结构和功能。葡萄糖触发培养神经元的轴突初始节段(AIS)可塑性。通过结构化照明显微镜成像,在葡萄糖处理下的AIS晶格结构显示增加的间距。480-kDaAnkG有助于AIS可塑性。
    The axon initial segment (AIS) plays an important role in maintaining neuronal polarity and initiating action potentials (APs). The AIS adapts to its environment by changing its length and distance from the cell body, resulting in modulation of neuronal excitability, which is referred to as AIS plasticity. Previous studies found an ~200 nm single periodic distribution of the key AIS components ankyrinG (AnkG), Nav 1.2, and βIV-spectrin, while it remains unclear how the lattice structure is altered by AIS plasticity. In this study, we found that the length of the AIS significantly increased, resulting in increased neuronal excitability, with high-concentration glucose treatment. Structured illumination microscopy (SIM) images of the lattice structure showed a dual-spacing periodic distribution (~200 nm and ~260 nm) of AnkG, Nav 1.2, and βIV-spectrin. Moreover, 480-kDa AnkG was crucial for AIS plasticity and increased lattice structure spacing. The discovery of new regulators for modulating AIS plasticity will help us to understand and manipulate the structure and function of the AIS. Glucose triggers axon initial segment (AIS) plasticity of cultured neurons. AIS lattice structure under glucose treatment shows an increased spacing by structured illumination microscopy imaging. 480-kDa AnkG contributes to AIS plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    轴突初始节段(AIS)是通过动作电位(AP)产生控制神经元兴奋性的专门结构。目前,关于响应神经活动的长度和位置变化的AIS可塑性已被广泛研究。但是如何调节AIS直径仍然难以捉摸。在这里,我们报道了COUP-TFI(鸡卵清蛋白上游启动子转录因子1)是发育中和成年小鼠新皮质中AIS直径的重要调节因子。COUP-TFI的胚胎或成人消融导致AIS直径减小和AP产生受损。尽管在稀疏的单个神经元和神经元群体中的COUP-TFI消融对AIS直径和AP生成有类似的影响,它们加强和削弱,分别,突变神经元中的自发接收网络。相比之下,在稀疏的单个神经元中过度表达COUP-TFI会增加AIS直径并促进AP的产生,但减少了接收自发网络。我们的发现表明,COUP-TFI对于AIS直径的扩展和维持以及AIS直径细调在哺乳动物皮层神经元中动作电位的产生和突触输入都是必不可少的。
    The axon initial segment (AIS) is a specialized structure that controls neuronal excitability via action potential (AP) generation. Currently, AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated, but how AIS diameter is regulated remains elusive. Here we report that COUP-TFI (chicken ovalbumin upstream promotor-transcription factor 1) is an essential regulator of AIS diameter in both developing and adult mouse neocortex. Either embryonic or adult ablation of COUP-TFI results in reduced AIS diameter and impaired AP generation. Although COUP-TFI ablations in sparse single neurons and in populations of neurons have similar impacts on AIS diameter and AP generation, they strengthen and weaken, respectively, the receiving spontaneous network in mutant neurons. In contrast, overexpression of COUP-TFI in sparse single neurons increases the AIS diameter and facilitates AP generation, but decreases the receiving spontaneous network. Our findings demonstrate that COUP-TFI is indispensable for both the expansion and maintenance of AIS diameter and that AIS diameter fine-tunes action potential generation and synaptic inputs in mammalian cortical neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号